Air Force Materiel Command

Developing, Fielding, and Sustaining America's Aerospace Force

How to Use Engineering Resilient Systems Technologies to Improve Defense Acquisition Processes

Dr. Ed Kraft Chief Technologist USAF/AEDC

NDIA 15th Annual Systems Engineering Conference October 22-25, 2012

Approved for Public Release

Integrity - Service - Excellence

- Defense acquisition is already broken
 - 1. Systems Engineering event driven vs effects based
 - 2. Requirements not necessarily connected to physical and fiscal reality
 - 3. Complexity aerospace/defense community self inflicted wound
 - 4. Capacity "procurement holidays" increase cycle time
- Reduced budgets are a fact of life
 - Fewer acquisition new starts
 - Reduced infrastructure, reduced capacity
- Can Engineering Resilient Systems technologies be an enabler to overcome pending reductions and increase the quality and output of the US aerospace industry?

ERS Key Technical Thrust Areas

- Systems Representation and Modeling
 - Physical, logical structure, behavior, interactions, interoperability...

 Enabling well-informed, low-overhead discussion, analysis, and assessment among engineers and decision-makers

Correlating Key Technical Thrust Areas and Challenges to Defense Acquisition

	Effects Based Systems Engineering	Requirements	Complexity	Capacity
Systems Representation and Modeling	•Early assessment of TRL, MRL, IRL, RAM through integrated modeling and testing	 Probabilistic based analysis/design tools Family of resilient designs Resilient, robust AoA 	•Probability based assessment of system uncertainty/risk for added complexity	 Increased throughput through integrated M&S/RDT&E processes Reduction of late defects
Characterizing Changing Operational Contexts	•Assess resilient design space at critical systems engineering decision points	•Translation of operational scenarios to system requirements through coupled models	 Sensitivity of design space to changing operational complexity Insensitive architectures 	 Rapid engineering response to changing operational scenarios
Cross-Domain Coupling	•Subsystem optimization/integration for total system performance	 Integrated wargame, LVC simulators and physics based models Interoperability assessment 	•Assessment of subsystem design on integrated system of systems interoperability	 Reduced cycle time for subsystem integration Early, continual assessment of reliability and suitability
Data-driven Tradespace Exploration and Analysis	•Quantified uncertainties at critical decision points •Programmatic "loss functions" tied to uncertainties	 AoA feasibility and affordability Tradespace between achieving all KPPs and warfighter utility 	•Impact of added complexity on RDT&E , manufacturing, and life cycle costs	•Minimum analog/digital data set to quantify margins and uncertainties over tradespace
Collaborative Design and Decision Support	 Interface between govt / industry analysis capabilities Critical decision metrics 	 Independent govt assessment of requirements and milestones achieved 	•Decision space for increased complexity and impact on LCC, throughput, and O&S costs	•Management of models and data over life cycle – reuse in differrent programs

1. Systems Engineering Key Leverage Points Marked by Events – Mired by Lack of Effectiveness

4. Late Defects

CREATE-AV

(Computational Research Engineering

Acquisition Tools Environment for Air Vehicles)

- Development focused on impact to acquisition by embedded subject matter experts
- Successfully delivering a family of products supporting activities from early trade studies to detailed engineering design
- Using pilot studies to demonstrate ability to efficiently provide better physics-based design and analysis capabilities

 High-fidelity, fixed wing flight system

modeling

 Early engineering, design, and analysis

Kestrel

 High-fidelity, rotary wing flight system modeling

Firebolt

 Propulsion module integrated into Kestrel and Helios

Sentri

 CREATE-RF radio frequency modeling capability compatible with DaVinci

Characteristics of M&S Domains

Simulator **Comm Models** Discrete Event Simulation •Real Time •High Resolution Time – Space L-V-C Interface Visualization •Event Engineering Models •Table Look Ups Physics Modeling **Operational Modeling** Discretized Physics • Discrete Event Simulation, Real Time Common Interface Agent Based Modeling Phenomena Visualization • < Real Time **Built on Reducing** Scenario Visualization **Physics Models to Light** Event Engineering Models

Table Look Ups

Weight Algebraic **Relations Using High** Performance Computing

Recent Breakthrough CREATE-AV

Game Changing Engineering Process Improvement that creates lightweight algebraic models from hi-fi simulations

and digital inputs

Conceptual Design

 Early discovery of nonlinear aerodynamic issues

 Nonlinear aero surface loads for conceptual structural design

 Nonlinear aero loads for flight control law development

Detailed Design

 Evaluation of aerodynamics from outer mold line (OML) changes

 Updated nonlinear aerodynamic surface loads for changed OML to evaluate structural design

· Nonlinear loads for flight control law refinement with detailed control surfaces

Flight Test

 Pre-flight maneuvers planned for test with any store loadout

Eliminate benign flight tests

System Identification Model Building

Example Game Changing Process

- Compute a maneuver at a particular flight condition (only need OML)
- Knowing input angles, rates and output loads, allows an algebraic model to fit to the data

$$C_L(\alpha, q, \dot{q}) = C_0 + C_1 \alpha + C_2 q + C_3 q^2 \alpha + C_4 \dot{q} \alpha + C_5 q^4 + C_6 \dot{q} q^2 + C_7 q \alpha^2$$

 $+C_{8}\dot{q}q+C_{9}\alpha^{3}+C_{10}\dot{q}+C_{11}\dot{q}^{3}+C_{12}\dot{q}^{2}+C_{13}q^{2}+C_{14}q\alpha$

 Sys ID model gives dynamic behavior for ANY maneuver inside the regressor space AND static lift curve slope before a wind tunnel or flight test article exists

Effects Based Systems Engineering Integrating M&S, RDT&E, and Statistical Engineering

Underpinned with Statistical Engineering to Quantify Margins and Risks at Key Decision Points

2. Requirements Setting Cost of Inadequate Analysis of Alternatives

- GAO* concluded that the majority of AoA's evaluated did not sufficiently inform the business case for starting new programs.
- AoA should provide the basis for a solid, executable business case before committing resources to a new system development;
 - Warfighter needs are valid and can be best met with chosen concept
 - The chosen concept can be developed and produced within existing resources (proven technologies, design knowledge, adequate funding, and adequate schedule)
- Narrow scope and limited risk analysis in AoA's attributed in part to:
 - 1. Choosing a solution too early in the process
 - 2. Compressed timeframes for conducting an AoA
 - 3. Lack of guidance for conducting an AoA including to what extent to perform a risk analysis

Can ERS positively impact acquisition by providing resilient and robust trade study capabilities, tools to expedite the AoA processes, and a framework for consistent and comprehensive risk assessment? Scope of AoA Analyses Impact On Cost and Schedule

Quality of AoA Risk Assessment Impact On Cost and Schedule

*Source:GAO-09-665 "Many Analysis of Alternatives Have Not Provided a Robust Assessment of Weapon System Options", September, 2009

Through application to a flight system of interest, demonstrate the use of ERS concepts and enabling tools can improve the Pre-Milestone A Analysis of Alternatives process by:

- 1. Identifying and maintaining a broader range of feasible solutions using high-performance computing and scalable, multi-discipline, physics-based models to efficiently and rapidly provide a data-driven resilient trade space for exploration and analysis of alternative materiel solutions
- 2. Accelerating the analysis time by connecting physics-based models through surrogate response surfaces with operational and functional models to dynamically evaluate alternative materiel concepts against requirements
- 3. Performing a structured assessment of cost, schedule, and performance risk using probability based design methods to statistically connect concept feasibility with performance and affordability

Use the CREATE-AV DaVinci modeling capability as the scalable multi-physics based design tool to efficiently explore a resilient design space using the associated design variables,

ERS C-X Pilot Demonstration (continued)

Demonstrate that the DaVinci model output can be accurately represented by a surrogate response surface and injected into engagement models to show an iterative ability to adjust scenarios and requirements to physical feasibility

* Future potential demonstration using the same surrogate response surface model to interface with flight simulators in a distributed mission operation to assess interoperability of alternative concepts.

ERS C-X Pilot Demonstration (continued)

Perform a structured assessment of cost, schedule, and performance risk using probability based design methods to statistically connect operational requirements and concept feasibility with performance and affordability Performance-Cost-Risk Objective Space

Multi-Disciplined Resilient Design Space

High performance computing enabled rapid, comprehensive assessment of robust, resilient design space

3. Complexity

Source: Dr. Kirstie L. Bellman Making DARPA META Goals Come True: How do we Revolutionize Verification and Validation for Complex Systems? S5 2010, WPAFB, June 17, 2010

Complicated or Complex? Different Domains Require Different

Design, Integration and Testing Approaches

AFMG

4. Reduction in Capacity Unless We Do Something Different

Reducing Workload/Increasing Capacity Streamlining Testing at the Campaign Level New T&E Tools + DOE

- Development of ERS technologies and tools necessary but not sufficient
- Requires integration of tools/technologies into changing processes
 - Critical processes
 - Govt / industry roles
 - Inertia of legacy processes
- Need to develop Use Case for application of ERS technologies/tools to change processes
 - Identify stakeholders, process owners
 - Clarify as-is
 - Demonstrate to-be with ERS tools/technologies identifying who, what, how, why