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Motivation 

 Virtually every new aircraft program encounters 
unexpected aerodynamic or structural integrity  problems 

– Unpredicted complex aerodynamic issues such as vortex/shock/boundary 
layer interactions have resulted in 
 issues such as tail buffet, abrupt wing stall, limit cycle oscillations 

 greatly reduced performance and/or increased structural weight 

– Control surface sizes have been modified on almost every fighter in the 
modern era 
 Increased or even decreased empennage after flight demonstrations  

– Modifications after “bending metal” are at the costliest stage in the 
program and can even kill an aircraft program due to cost and schedule 

 Engineering Resilient Systems Requires a More Global 
View of the System – Unpredicted issues can come from 

– Off design conditions 
 A few design points analyzed heavily and in between points interpolated 

 Static aerodynamics analyzed but transient behavior ignored 

– Multi-disciplinary issues 
 Aerodynamics of rigid bodies dominates analysis with little aero-structural, aero-

kinematic/kinetic, or aero-propulsion analysis performed 
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Motivation 

Why are these off-design and multi-disciplinary issues 
unchecked?  

– Conceptual/Preliminary Design is the driver of life-cycle cost but has the 
lowest fidelity information available 

– Empirical methods are fast and successful for on-design conditions but 
 force designs to remain within knowledge space (conventional) 

 miss nonlinear aerodynamic issues  

– Low-order aerodynamic tools are fast but 
 require very highly experienced designers to overcome modeling deficiencies 

 miss nonlinear aerodynamic issues 

– Loads models are primarily built from a wind tunnel campaign and 
modified by “fix-ups” over time for configuration changes 
 Expensive tunnel testing can be delayed significantly from concept to ensure 

applicability of the data to the detailed design phase 

 Rarely do a complete re-run for aerodynamic shape changes 

 Can miss nonlinear aerodynamic issues due to model scale/shape difference 
from flight configuration  
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Motivation 

 To engineer a more resilient system and capture these 
issues earlier we need high fidelity multi-dimensional 
tools to be used earlier 

 CFD has not been fully incorporated into early conceptual 
design process due to  

– Cost of a single point calculation 
 May take days on hundreds or even thousands of processors 

– Number of single points necessary to fill a database for the flight envelope 
 Can number in the millions of points 

 Do nothing to predict dynamic effects 

 May miss aerodynamic issues between points 

– Lack of confidence in whole envelope accuracy (e.g. high alpha, dynamics) 

– Simulation traditionally did not incorporate critical systems such as control 
surfaces, flight control systems, structural models, propulsion effects 

– CFD has been used like wind tunnel tests rather than flight tests 

We need a new analysis process compatible with the 
design process that uses the high fidelity tools in a 
different way 
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Motivation 
 Proposed revolutionary improvement to the 

Conceptual/Preliminary Design process to improve 
resiliency 

– Continue using low-order/empirical methods to reduce number of 
configurations from order 10,000 to order 10 
 Current methods work well to explore the design space for on-design conditions 

 Result should be an outer mold line (OML) shape for order 10 configurations 

– Use CSE to determine the aerodynamics of the entire envelope 
 Starting with OML quickly build surface and volume meshes (1-2 days) 

 Develop a center of gravity (CG) loads model that incorporates higher order 
effects (e.g. turbulence, separation, shock/vortex/boundary layer interactions) 
that can be exercised in milliseconds on a laptop for any point in the envelope 
and practical maneuver (2-3 days) 

 Develop a surface loads model that can be exercised in milliseconds on a 
workstation for any point in the envelope and maneuver (same 2-3 days) 

 Explore the CG and surface loads model looking for problem areas and structural 
design requirements to eliminate late defect discovery 
– Develop database search algorithms looking for strange behavior 

 Optimize configuration for both on- and off-design conditions to make the design 
more resilient: re-run 2-3 day simulations to regenerate models 

– Use high fidelity CG and surface loads models to size control surfaces, 
create preliminary structural design, assess mission performance, and 
create early man-in-the-loop simulator. All from an OML… 
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System Identification 

High Fidelity CSE Code 
• System level high fidelity 
solver including aerodynamics, 
structural dynamics, flight 
mechanics, and propulsion 
• Efficient on large processor 
count (single simulation in 
hours, full envelope in days) 
 
High Performance Computing 
• Large computational resources 
(order 104 to 105 cores) 
• Current US DoD buys are for 
several machines at 
approximately 100,000 cores 
 
Compact Model Building 
• Approach that can convert 
days of high fidelity CSE to 
compact, efficient model for use 
on laptop/workstation 
• Approach that can allow higher 
and higher fidelity simulation 
(add control surfaces, aero-
elasticity, propulsion, etc.) 

Game Changing Combination 
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Compact Model Approach (CG Loads) 

 Simulate closed-loop, full-scale a/c at edge-of-the-
envelope conditions with a single, complex and 
efficient maneuver (possibly non-flyable) per flight 
condition 

 Generate nonlinear, dynamic reduced-order 
aerodynamic models 

 

 

 Use model for S&C analysis, flight simulation, 
control system design, etc. 

– New approach much more efficient than traditional 
“brute force” static solutions filling a database and then 
computing derivatives numerically 

– Allows Engineers flexibility to handle any new 
configuration and independence from contractors 
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Aircraft System Identification (SID) 

• SID – construct a mathematical model of a system 

• SID goal: determine the functional dependence b/w input and output 
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• Already applied to WT and FT data for: 

• Flight simulation 

• Control system design 

• Dynamic analysis 

• Our approach: apply SID to CFD data 

• Obtain both Static and Dynamic data 
from single computational maneuver 

• Two methods: MVP and RBF 

Compact Model Approach (cont.) 
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Compact Model Approach (cont.) 

CSE Code 
CSE Code 

SYSID Tool 
kSID, kPOD 
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CSE Code (Kestrel) Architecture 

• Unique Event Driven Infrastructure with Modular Components 
• Unstructured Navier-Stokes CFD Solver (kAVUS) 
• Cell Centered, Finite Volume, 2nd Order Temporal and Spatial Solver 
• Hybrid Mesh – Tetrahedrals, Prisms, Pyramids, Hexahedrals 
• Euler, Laminar, and Turbulent Flow (SA, SST, SA-DDES, SST-DES) 
• Moving Mesh, Deforming Mesh Capable with GCL 

• Rigid/Aeroelastic Prescribed and 6DOF Predictive Motion Capable 
• UI for pre-processing pre-flight capability to build complex motions 
• UI for post-processing SYSID model building and data analysis 
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Baseline Aerodynamic CG 
Loads Modeling Using 
System Identification 
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AGARD 445.6 Wing Simulations 
 Half-span grid with: 

– 2,974,944 cells 
 2,101,020 prisms 

 848,184 tets 

 Flow conditions: 

– M∞=0.95, P∞=0.66 lb/in2, T∞=464.2R 

 Numerical parameters: 

– t=0.0002s 

– 5 Newton sub-iterations 

– SA-DDES 

 Sinusoidal Pitch Chirp Training Maneuver 
–  = 0+10 deg, frequency varying from 0.2 to 20 cycles/sec  

 Used System Identification to “fit” the data 
 CL (a,q,q) =C1 +C2a +C3a

3 +C4a
2q+C5aqq+C6q+

C7qq
2 +C8q

3 +C9aq
2 +C10q

2q+C11q
3 +C12a

2 +

C13a
2q+C14aq

2 +C15aq+C16q
2 +C17q

2 +C18q

CD(a,q,q) =C1 +C2a
2 +C3aq+C4q

2 +C5qq+C6q
2 +

C7aq+C8a
3 +C9a +C10a

2q+C11q+C12q
2q+

C13aq
2 +C14q+C15q

3 +C16q
3 +C17a

2q

CM (a,q,q) =C1 +C2a +C3a
3 +C4a

2q+C5aqq+C6qq
2 +

C7q
3 +C8aq

2 +C9q
2q+C10q+C11q

3 +C12a
2 +

C13a
2q+C14q

2 +C15q
2 +C16aq+C17aq

2 +C18q



Page-14 Distribution Statement A: Distribution unlimited; Approved for Public Release. 
 

Sinusoidal Pitch Chirp 
Training Maneuver 
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Sinusoidal Pitch Chirp 
Training Maneuver 

 Comparison of System Identification Generated Model from the Training 
Maneuver with CFD Static Solutions 
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Complex Configuration 
Aerodynamic CG Loads 
Modeling Using System 
Identification 
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 Composite Pitch-Roll-Yaw Chirp 

–  = 0-25 deg,  = 0±2 deg,   = 
0±70 deg/sec 

– Multiple rotations 

 Input signals orthogonal 

 Requires full span F-16C grid 

 Conditions: M=0.6 

 Compare against Lockheed Martin 
Flight Test & Performance Data 

– LM: tip AIM-9s; CFD/SID: tip LAU-
129s 

 

F-16C Static SID Analysis 
 Lockheed Performance Data vs. SYSID (Kestrel) 


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F-16C Static SID Analysis 
 Lockheed Performance Data vs. SYSID (Kestrel) 

 Composite Pitch-Roll-Yaw Chirp 

–  = 0-25 deg,  = 0±2 deg,   = 
0±70 deg/sec 

– Multiple rotations 

 Input signals orthogonal 

 Requires full span F-16C grid 

 Conditions: M=0.6 

 Compare against Lockheed Martin 
Flight Test & Performance Data 

– LM: tip AIM-9s; CFD/SID: tip LAU-
129s 

 


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Extension to Surface 
Loads Modeling Using 
Proper Orthogonal 
Decomposition (POD)  
and System Identification 
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Modified Approach for Surface 
Loads Model Development 
 Perform a training maneuver similar to the CG loads 

method and collect loads (pressure or forces) at each 
surface mesh location as a function of time 

 Perform a Proper Orthogonal Decomposition (POD) of the 
surface loads to determine a set of aero surface modes 
and companion POD coefficients as a function of time  

 Perform a System Identification analysis of the maneuver 
inputs (, , , P, Q, R, …) and POD coefficient outputs to 
determine a functional form of the POD coefficients 

 Resulting model is predictive, compact, efficient, accurate 
on and off-design, and easy to re-generate with new 
configurations 

 Things to work on… 

– Need for improvement in training maneuvers designed for 
surface load generation 

– System Identification methods for fitting the POD coefficients 
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Loads Model Development 
Example: AGARD 445.6, M=0.95 
 Simulated a pitch sinusoidal chirp 

– Initial/final frequencies of 0.2/10 cycles per second 

– Initial/final amplitude of 10/5 degrees  

 POD of the training maneuver developed with 20 modes 

 System Identification used to “fit” data 

– Multi-variate polynomial approach proved inadequate for POD 
coefficients (not an exhaustive study)  

– Neural network approach proved fruitful 

 Compared POD/SYSID prediction with CSE for a sinusoidal pitch 
with 10 deg amplitude and 2 cycles/sec frequency 

POD Mode 1 POD Mode 2 POD Mode 3 POD Mode 4 POD Mode 5 
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AGARD 445.6 Wing 
Comparison of Surface Pressure for CSE to POD/SYSID 

2 Cycles/Sec Pitch Maneuver 
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AGARD 445.6 Wing 
Comparison of Surface Pressure for CSE to POD/SYSID 

2 Cycles/Sec Pitch Maneuver 

 Started with only an OML 

 Built a POD of a training 
maneuver 

 Built a predictive SYSID of 
the POD 

 Re-constructued a maneuver 
using the predictive 
SYSID/POD 

 Compared well with CSE 
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Ultimate Goal 

 Integrate all modules into high-fidelity tool capable 
of developing accurate models of full elastic aircraft 
configurations 

Loads = f (q,M,a,a2,q,aq,q2,… )

Aerodynamic Loads 

Structural Model 

Fluid-Structure Interpolation 

Fluid Grid Deformation 

Control Surface 
Deformation 
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Conclusions & Outlook 

 Deficiencies in the current conceptual, 
preliminary, and detailed design process 
have been noted 

 A new method has been proposed to 
address these deficiencies using CSE early 
in the design phase using 
– A system level high-fidelity CSE tool 

– High performance computing 

– Compact efficient models built from high-fidelity CSE 

 Examples have been given of the method 
applied to CG loads and surface loads of a 
wing showing great promise for the method 
on realistic configurations 

 Future work incorporating control surfaces, 
aeroelasticity, automatic flight control 
systems, and propulsion has been proposed 
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Questions? 
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F-16 Aerodynamic CG 
Loads Modeling Using 
System Identification 
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Baseline F-16 Simulations 

 Half-span grid with: 

– 790,109 nodes 

– 3,171,892 cells 

– 8 prismatic layers 

 Generated with NASA tool 
VGRIDns 

 Cells concentrated in the strake 
vortex 

 Forebody bump, diverter, 
ventral fin modeled 

 Corrected engine mass flow 
modeled 

 Flow conditions: 

– M∞=0.25, 0.6, .8, .9, .95, 1.2, 1.6, 2.0 

– Altitudes = 5k, 10k, 20k, 30k 

 Numerical parameters: 

– t=0.0002s 

– 3 Newton sub-iterations 

– DDES based on SA with RC 

Engine face 
(sink) 

Exhaust 
(source) 
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Multi-axis Training Maneuver 
Pitch-Yaw Chirp 

 Composite Pitch-Yaw Chirp 
maneuver allows a single motion 
input to create a model including 
motion about two axes 

–  = 15+15 deg,  = 0+15 deg 

 Input signals made orthogonal 
(dot product = 0) 

 Requires full span F-16C grid 

 Conditions: M=0.6, Alt.=5k ft. 
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System ID Applied to Multi-axis  
Training Maneuver: Pitch-Yaw Chirp 

 SIDPAC Model: 

 

 

 Validated against static 
CL- data and single axis 
motion pitch chirp 
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2.5g Wind Up Turn Flight Test Maneuver 
 Prescribed motion based on 

flight test data (rotations 
only) 

 Use reduced order loads 
model to perform maneuver 
& compare 

 Good Lift prediction 

 Drag prediction not as good 
as expected 

 Conditions: M=0.6, Alt.=5k ft. 

  
 Lift Drag 
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Training Maneuvers in 6-DoF 

 Incorporate both translation and rotation 
into the training maneuver to provide better 
regressor space coverage 

 Much better drag model predictions resulted 

C
D
 


