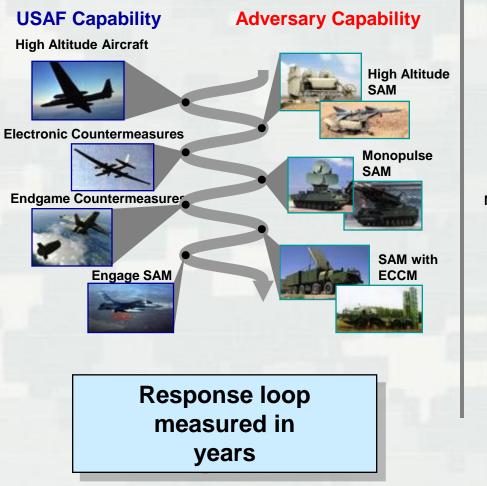
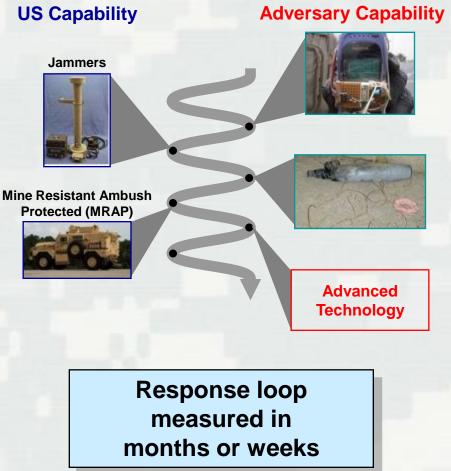
Engineered Resilient Systems

VSI

A Concept of Operations


Robert M. Wallace, Ph.D., P.E. – USACE-ERDC Lynne Ewartpaine, Ph.D. – NAVSEA


US Army Corps of Engineers BUILDING STRONG_®

The need for resilient systems

Conventional Warfare

Counter-Insurgency Warfare

Engineered Resilient Systems Key Technical Thrust Areas

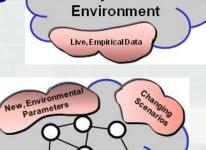
Systems Representation and Modeling

 Capturing physical and logical structures, behavior, interaction with the environment, interoperability with other systems

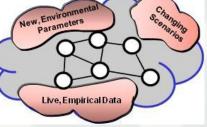
Characterizing Changing Operational Contexts

 Deeper understanding of warfighter needs, directly gathering operational data, better understanding operational impacts of alternative designs

Cross-Domain Coupling


- Better interchange between "incommensurate" models
- Resolving temporal, multi-scale, multi-physics issues across engineering disciplines

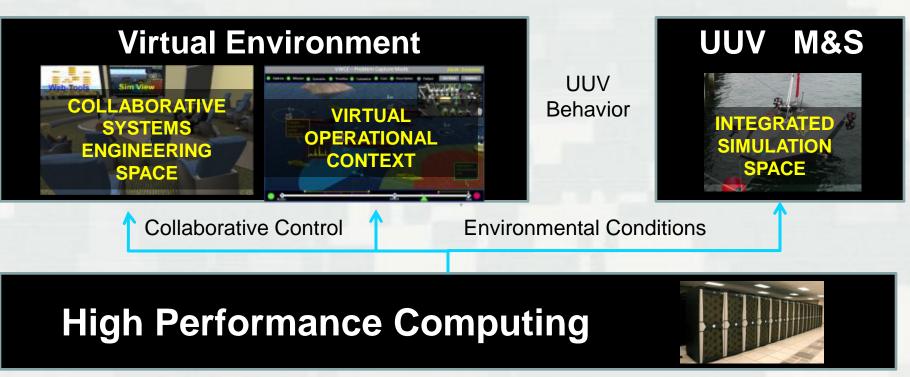
Data-driven Tradespace Exploration and Analysis


 Efficiently generating and evaluating alternative designs, evaluating options in multi-dimensional tradespaces

Collaborative Design and Decision Support

 Enabling well-informed, low-overhead discussion, analysis, and assessment among engineers and decisionmakers

Dynamic



Degree of Resilie

New, Enviro

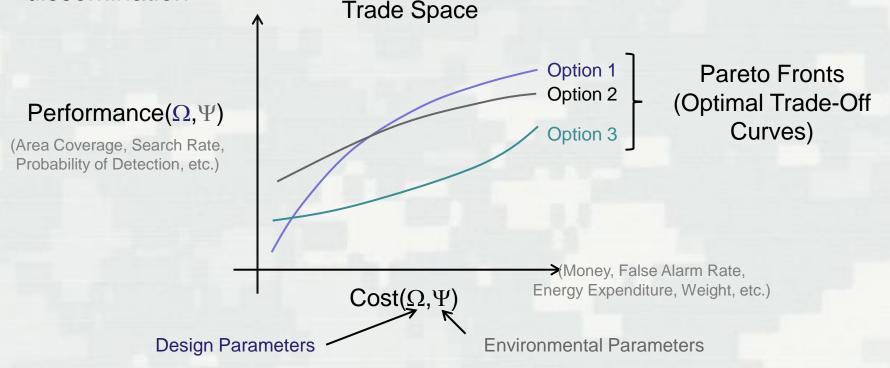
ERS – Integrated Modeling Architecture

- Virtual Test Bed integrates HPC Simulations for environmental conditions and accurate vehicle response, Distributed M&S for Operational Context and Collaborative Virtual Environment for Systems Engineering
 - Provides physics-based simulations for realistic mission evaluation
 - Contextual visualization of HPC results in a mission relevant simulation environment
 - Collaborative acquisition procedure using virtual environment

UNCLASSIFIED

Warfighter Problem

- Review of existing surveillance capabilities of base
- New requirement to station high-value surface ship
- Solution alternatives are computed in Simulation Space
- Alternatives are evaluate in the Operational Space and Collaborative Space


Trade-space – Permanance

 Alternatives are based upon predecessors and have persistence throughout the lifecycle

Trade-space – Analysis

- Given functional forms for Performance and Cost objectives in terms of Design Parameters Ω and Environmental Parameters Ψ, optimal trade-off curves can be computed for each Option using existing multiobjective optimization techniques
- High performance computing and virtual world technology can be used for rapid trade-off curve generation, visualization, and dissemination

Alternative 1 – Baseline Extended

- Alternative 1 extending current capabilities
 - Reliance on traditional surveillance via cameras, land-line arrays and armed patrols
 - Trade-space variables of KPP, Manning, and Cost identified
 - Several comments from joint community members and recognition of estimated coverage metrics
 - Note: Alternative 1 built on same 3-D Sim Space as Warfighter Problem

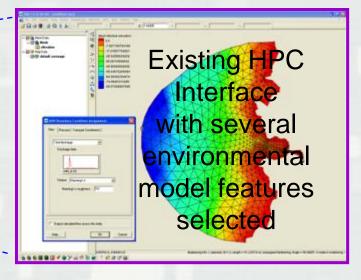
Alternative 2 – New UUV

Alternative 2 – UUVs used for automated surveillance

- Many factors discussed including necessary specifications of new UUV, C2 implications, and cost
- Focus is on cost and schedule of new design
- Cost considered to high
- SE suggest extending mission of an existing UUVx

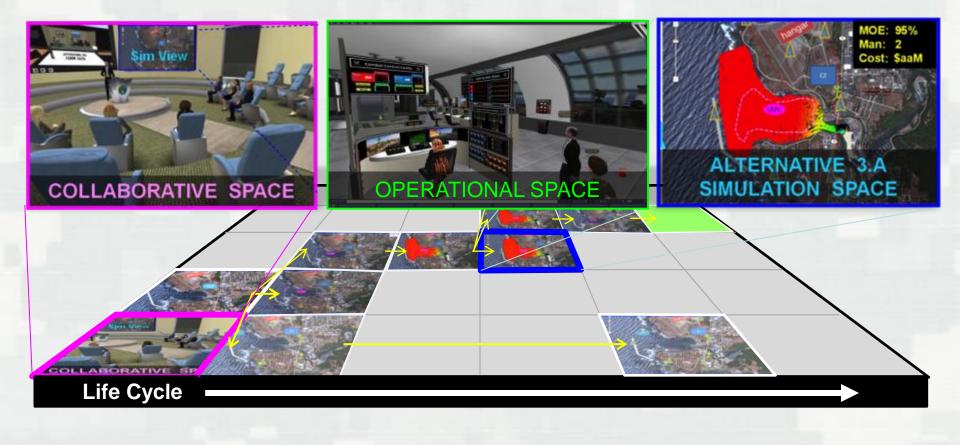
Alternative 3 – Modified UUV

Alternative 3 – Extend mission of existing low-cost UUVx


- Focus is on first-level modeling of UUVx performance (based on KPPs) without modifications
- Results indicate near KPP performance
- Warfighter challenges performance estimate due to extreme environmental conditions; requests modeling across env. extremes

Simulated Environmental Factors

- Communities discuss appropriate environmental extremes while Analyst input parameters into existing web-based HPC interface
 - River / Bay currents based on tide and seasonal flooding
 - Salinity (impacting sensor performance and UUV buoyancy)
 - UUV dynamics with range, sensor coverage etc.


UUV operating under simulated environment

- Community reviewing HPC results both in native visualization (web-tool display) and in contextual Simulation Space (VW interface)
 - Identifies vulnerability due to extreme flood conditions
 - Debate to modify UUVx design (e.g., greater range dynamics) vs
 - Reconsideration of Alternative A

Design Evolution

- Further pan to show previous simulation space was just one in a 3-D evolution of problem to alternative analysis representations
- Indicate simulation space is persistent and can be provided as part of an RFP Industry Day package for Milestone B.

