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NDIA White Paper on Manufacturing M&S

Honeywell

* Key findings from 18 month study on current DFM practices*
- Producibility is a neglected “ility” due to the lack of analytical tools
- Many costly producibility issues inadvertently designed-in
- Current commercially available DFM analysis tools inadequate
- Focused M&S research and investments needed to close gaps

- Roadmap development underway for key M&S focus areas
- Systems engineering trade study and design methodologies
- System integration, assembly, and test modeling
- Enterprise level supply chain design and analysis methods
- Electrical, mechanical, and assembly yield modeling
- Quantitative DFX analyses including complexity characterization
- Life cycle cost modeling including uncertainty and risk analysis

*NDIA Manufacturing Division White Paper, “21st Century Manufacturing Modeling &
Simulation Research and Investment Needs,” Released May 2011.

NDIA Committee Goal is to Influence S&T Investments




Why Focus on Producibility?

Honeywell

* Cost of Goods Manufactured
- Direct material and labor costs
- Manufacturing overhead costs

* “Producer” life cycle cost drivers
- Low yield & process inefficiencies
- Manufacturing process complexity
- Excessive quality specs/controls

* Product cost reduction strategies
- Post-NPI value engineering
- Factory lean transformation
- New material/process technologies
- Strategic sourcing & material mgmt
- Commodity “should cost” analysis
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Because Producibility Drives Significant “Hidden Costs”



But is there a Business Case?

Honeywell

* Most legacy fielded systems have known producibility issues
- VE changes to improve design almost always cost prohibitive
- Significant sustaining engineering costs incurred year-after-year

- Aerospace-wide producibility improvement initiative launched
- Cost-benefit criteria developed based on factory financial impact
- Focus is reducing “producer” LCC drivers impacting the factory

2009 -2011 Financial Savings Dashboard

Projects — :
Address 2009-2011 Producibility Improvement Savings
~5% of One Year Forward Looking Financials
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Producibility Directly Impacts Cost of Goods Manufactured



Why Is Manufacturing M&S the Solution?

Honeywell

* Once design is “locked-down” producibility is “locked-in”
- Lack of relevant M&S tools prevents factory impact prediction
- Inadvertently “designed-in” inefficiencies can persist for years

* Producibility issues primarily impact factory overhead costs
- Root cause affinity mapping used to understand origins of issues
- Analysis substantiates proposed M&S research focus areas
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Significant ROl Associated with Development of M&S Tools



Mechanical vs. Electronic System M&S Needs

Number of Producibility Issues

Mechanical Producibility Breakdown
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Common Themes but Different Priority Focus Areas for
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“Real World” Producibility Examples

Honeywell

* Avionics RF transponder

- Circuit architecture drove trial & error
frequency tuning of individual cards

 Display graphics PBA card
- Functionality upgrade for a dense
design drove yield into single digits
* Engine controller chassis

- Size constraint drove compact design
requiring blind PBA installation

- Advanced alloy impeller
- Material developed that current
cutters cannot efficiently machine
« Advanced heat exchanger

- Weight drove non-optimal joint
design susceptible to braze erosion
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Many Producibility Issues Inadvertently “Designed-In”



Current Model-Based Approach Limitations
Honeywell

:<— Systems Eng Design Engineering Manufacturing —»:

Requirements Conceptual - idElnllERY CAE/CAD/CAM Test &
Analysis Design Design Based Design Evaluation

“Virtual Wall” “Virtual Wall”

“Function Centric” “Geometry Centric” “Operation Centric”
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Same Producibility Problems now just Happen “Virtually”



Design-Manufacturing Interdependence
Honeywell

- Early design decisions lock-in cost
- Trade studies focus on performance
- Use of exotic materials to save weight
- Design thrown across the “globe”
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- Moving manufacturing to the “left”

- Concurrent engineering teams Size &
- Early supplier involvement
- Design for Manufacturing (DFM)

\\.J

* Quantitative analysis tools lacking
- Manufacturing knowledge mostly tacit
- High level DFM guidelines/checklists
- Rule-based CAD/CAM occurs too late [m Viature M&S Capability y]

] Emerging M&S Capabilit
EEE Void in M&S Capability

M&S a Critical Enabler to Move Manufacturing to the Left

Actual Funds Spent



Sate-of-the-Art DFMA Analysis
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“As Is” Design

* Assy Time 204 sec

“To Be” Design
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Source: R.B. Stone et. al, “A Product Architecture-Based Conceptual
DFA Technique,” Design Studies, Vol. 25, No. 3, pp. 301-325, May 2004.

Simple DEMA Approaches work for Simple Products




Aerospace & Defense DFM Analysis Needs
Honeywell

* A&D producibility challenges
- Maximum functionality in smallest package
- Highly 3-D shapes with intricate features
- Exotic hard to machine/fabricate materials
- Tightly controlled dimensions & tolerances

* Producibility a design characteristic
- Ease and economy of making item(s) at rate
- Manufacturing-Assembly-Inspection-Test
- F(fit, form, function, complexity, capability,..)

* Need quantitative analytical design tools
- Make “hidden factory” costs & risks visible
- Predict design-driven manuf inefficiencies
- Shape design vs. verify rule adherence

Complex Product Designs Require Advanced DFM Tools



Honeywell Producibility Analysis Toolkit

Honeywell
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“Virtual Manufacturing” Frontier
Honeywell

Current State Reality m m
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Transforming the Design Space

Future State Vision U
“Fit-Form-Function-Operation Centric”

_____________________________________________________ <
“Virtual World” :

Complex System Design & Development ;: I

I

Preliminary Detail Design Test & |

Ticar’”’ 1 CC —

Evaluation — oGt
Production &
Deployment

Design Optimization

RELIIENERE Conceptual Preliminary Detail Design Test & e dPEANITRAr ] OO |
“Producer” Analysis Design Design Optimization Evaluation A

Needs

Need to “Re-Engineer” Product Development Processes



Summary and Key Takeaways
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* Producibility issues drive up the Cost of Goods Manufactured
- Neglected “ility” due to lack of analytical predictive tools
- Inadvertently “designed-in” inefficiencies can persist for years
- M&S tools needed to help guide product-process improvements

- Advanced manufacturing M&S is a potential “game changer”
- Quantitative tools to predict system producibility characteristics
- Supply chain analysis tools to predict industrial base behavior
- Desigh methods integrate manufacturing into SE trade space

- National research agenda needed for “virtual manufacturing”
- Improving A&D system affordability is an industry-wide problem
- No single company has resources to solve this problem alone
- Focused research & investments needed to develop capabilities

M&S is a Transformative Technology of the Future
for the Advanced Manufacturing Discipline



Honeywell




Reliability Engineering Discipline
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Reliability Theory
Reliability: Probability that a device will perform Physics of Failure Analysis
its intended function during a specified period of 4
time under stated conditions.
2 |«—— Useful Life ——>|
Analytical Basis RAMS : ; ;
i ili 3 ! sics-Base !
MTBF — 1  total operating hours Re“ablllty - : Fapir']gfe PffdiC“g“ I
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), Safety :
Ly 1 _
fl)=7gee r=g Trade Off Evaluations
. M
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I g | Configuration Ai |MTBF| Mcr

Existing Design | 0.961 | 125 5.0

[e2]

Alternative 1 | 0.991| 450 4.0

INPUT —}EE‘ OUTPUT :

Alternative 2 ] 0.990| 375 3.5

Maintainability M
N

( )( )( ) 2 Alternative 3 | 0.991| 320 2.8
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Focus is Early Detection of Failure Modes and System Safety



What About Producibility?

Honeywell
Merriam-Webster.com :
Air Force Research Lab
pro-duc-ibil-i-ty noun ‘pradmussbiste, Producibility: A design characteristic
o o which allows economical fabrication,
Definition of PRODUCIBILITY assembly, inspection, and testing of an
: the character, state, or fact of being producible -pFD'dUCE Q) verl item using available manufacturing
g ) techniques. The relative ease of
i ‘ Hefinition of propuce | Manufacture of an item or system.

5 a: to cause to have existence or to happen : BERING ABOUT

b : to give being, form, or shape to : MAKE; especially :
MAMUFACTURE

\.man-ya-fak-char, n

‘man-u-fac-ture =

K]

Definition of MANUFACTURE

3 : the act or process of producing something

Defense Acquisition University

BusinessDictionary.com Producibility: The measure of relative
ease of manufacturing a product. The
product should be easily and economically
fabricated, assembled, inspected, and
tested with high quality on the first attempt
that meets performance thresholds.

Producibility: Ease of manufacturing an item (or
a group of items) in large enough quantities. It
depends on the characteristics and design
features of the item that enable its economical
fabrication, assembly, and inspection or testing

by using existing or available technology.

Analytical First Principles Basis Needed for Producibility



Yield Improvement Impact Prediction
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ADD, . ork = (Yield ija = Yieldtarget) x Demand / ManufOlays
COPQqavings = ADDyeyork X Rework, e X ManufOIayS X Burden,.

WIP = ADD, ok X A Cycle Time x Std Cost

savings

* ADD,.,ork: @verage daily demand for the rework operations driven by low yield

* COPQg,yings: Projected annual cost of poor quality savings due to yield improvement
* WIPg,ings: Projected inventory savings due to yield improvement

*Yield.,q: &ctual yield of the process step where the defect(s) are generated

* Yield,,4¢: target yield of the process step where the defect(s) are generated

* Rework;;e: conversion processing time associated with the rework loops

* A Cycle Time : additional manufacturing cycle time associated with rework loops
* Demand: projected forward 12 month demand for savings calculations

« Std Cost: standard cost of the part/item being reworked

* Manufg,,s: number of actual manufacturing days in a calendar year

*Burden,,,: labor burden rate associated with the rework operations

Y=f(x) Formula Links Product Yield to Factory Financials



