Amphibious Combat Vehicle: Case Study of Using Cost to Generate Operational Requirements

NDIA Systems Engineering Conference – San Diego, CA 22–26 October 2012

Mr. Edward DeVilliers Dr. Shahram Sarkani Dr. Thomas Mazzuchi 24 October 2012

Purpose and Agenda

Purpose:

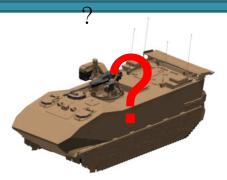
- Provide an overview of the Early Phase Systems Engineering process and techniques integrating cost and other technical and logistics factors in deriving operational requirements for the Marine Corps' future Amphibious Combat Vehicle (ACV).
- Agenda
 - Problem Statement
 - SEOPT and Process
 - Integrated Technical and Cost Modeling
 - Capability Selection
 - Tools
 - Results
 - Conclusions and Future Direction

The Problem 2010

2020s

Amphibious Assault Vehicle (AAV)

Current AAV is


- Old, slow and underarmed
- Limited water range
- Too heavy for its original design

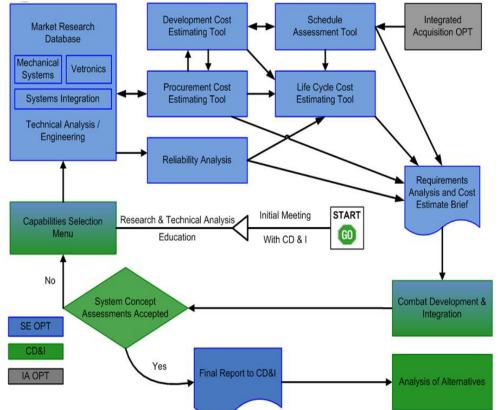
Expeditionary Fighting Vehicle (EFV)

Cancelled EFV design was:

- Fast and lethal
- Large water range
- Too expensive to buy and operate.

Amphibious Combat Vehicle (ACV)

Future ACV needed to support amphibious ops:


- Less expense to buy and operate than EFV.
- Avoid requirements that lead to a vehicle too expensive to buy.

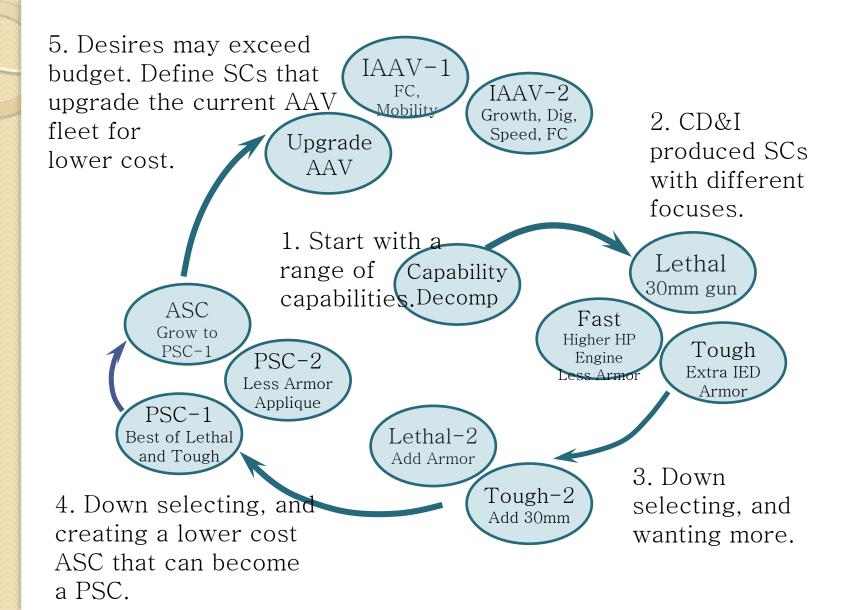
"Despite the critical amphibious and warfighting capability the EFV represents, the program is simply not affordable given likely Marine Corps procurement budgets. **The procurement and operations/maintenance costs of this vehicle are onerous**. After examining multiple options to preserve the EFV, I concluded that none of the options meets what we consider reasonable affordability criteria. As a result, I decided to pursue a more affordable vehicle." (Commandant of the Marine Corps, 2011)

Initial Cost Estimation

- Initial direction was to attempt direct requirement traceability to prime developer cost data to find areas for major cost reduction.
- Summation of requirements costs over 2.5 times the actual cost.
 - Material components supported multiple requirements.
 - Engineering dependencies among material components made substitution of lower cost components more difficult.
- Conclusion:
 - Analysis of requirement costs needed to be done against a holistic set of requirements.
 - Cost estimation and requirements selection needed to evolve into a larger effort of evaluating different system concepts.

SE OPT Process

USMC formed a team called the SE OPT to provide a set of cost-informed requirements for AoA analysis.

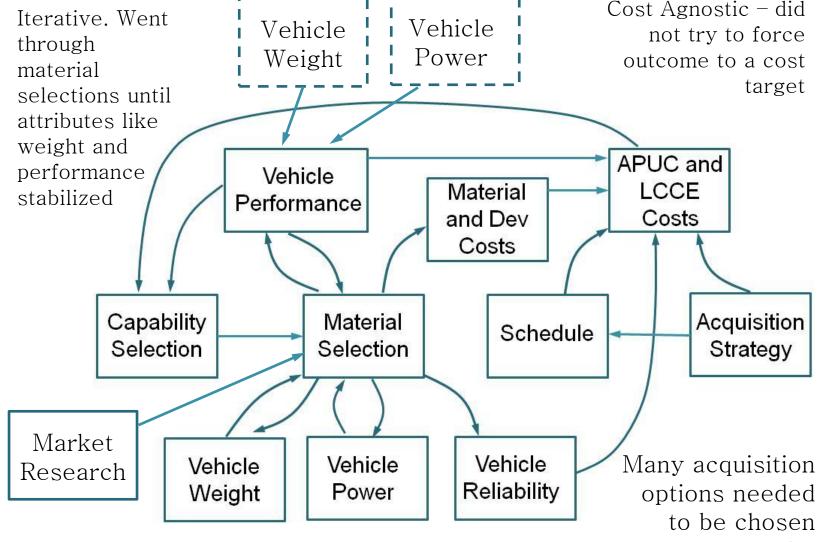

The Iterative Process:

- Work with the operational requirements customer (CD&I) on the initial range of capabilities.
- Form a set of selected capability options.
- Conduct market research on possible material components.
- Conduct multi-dimensional trade space analysis iterative material selection, first vehicle cost and vehicle attribute estimates.
- Estimate possible schedules and acquisition strategies.
- Conduct developmental cost and reliability estimates.
- Feed all data into LCCE tool.
- Redo process as needed with adjusted customer capability selections

Capability Options

To Move – Maintain appropriate speeds on land or water as specified in mission orders.	To Carry – Transport Marines from ship-to- objective and deliver them in fighting condition. (P-Variant)	SUSTAINMENT - 'Design for Support, Design the Support, Support the Design'	To Protect – Protect crew and embarked Marines against threat forces and weapons.				
Water mobility	Crew	Materiel Availability (JCIDS KPP) M _A = Number of End Items Operational/Total Population	Direct fire survivability				
Land Mobility	Troop carrying capacity	Design For Reliability (JCIDS KSA)	Indirect fire survivability				
Range	Troop Loads	MTBRR (Mean Time Between Remove & Replace in hours)	Mine survivability				
Operating Environment (without kit)	On-Board Equipment Material (OEM) Storage	MR (On-Board Intermediate) = Maintenance Manhours/Op hour	IED Protection				
Towing (Land & Water)	Water Survival Equipment	MCMT (On-Board Intermediate) = Corrective Maint Time/Total Number of Maint Actions	EFP Protection				
Navigation	Environmental Controls	Diagnostics	Directed energy				
Thermal vision (other than gun sight)	Additional Days of Supply (per # of Troops & Crew)	Depot maint support	Signature requirements (Visual, Acoustic Thermal, RCS)				
Silent Watch (functions)	Other Mission Essential Equipment (lbs)	Intermediate maint	AFSSS				
Weight growth Allowance	Cargo (without troops)	Operator maint	RPG				
	Litter Kit	Supply Chain/PHS&T	Rapid Obscuration				
To Shoot – Demonstrate weapons station and armament functionality (sight, traverse, elevate, fire). (P-Variant)	MK154 Line Charge Kit	Technical Data	Smoke Generation				
Firepower	Lighting	Computer Resources	Combat Identification				
Target Acquisition	Camie Nets (ULCANS)	Software Support	NBC Protection				
Reloading Capability		Support & Test Equipment					
Mixed Fleet Weapon Systems		Operational Site Activation (Portfolio?)					
To Communicate – Maintain minimum essential communications for safe and effective operations. (P-Variant)	Transportability - To be transportable by truck, U.S. rail, air, and sea.	System Training	Mission Performance (Traceable to OMS/MP)				
Voice Communications	Amphibious Shipping	Transition	Operational Availability A _o				
Data	Landing Craft	Initial	System Reliability				
Blue PLI distribution	Maritime Prepositioning Shipping	Refresher					
Software Hosting	Rail	Concurrency					
Internal Communications	Truck (lowboy)	Unit					
FIST Team Support	Air						
	Crane Lift (structure/appurtenances)		NOTE: ITEMS IN RED ARE RELEVENT TO				
	DOT Compatible (Roads)		LOGISTICS.				
	Ground pressure						

System Concepts



Cost Estimation Conducted

- A variety of cost estimation techniques were used to assess probable cost ranges of different system concepts:
- Actual costs for currently available material components (WBS level 4 and 5)
- Cost Estimating Relationships (CERs) for estimating develop-ment costs from material costs.
- Analogous cost estimation techniques for impact of production learning curve, contracting strategy savings, and operations and support costs based on the older AAV.

- Cost estimates produced, each with a three-point cost range of low, most likely and high:
 - Average Procurement Unit Cost (APUC)
 - Development costs
 - Life Cycle Cost Estimates (including MILCOM, Training, O&S, and disposal)
 - Cost profiles for R&D, PMC, and O&M funding for 30 years
- Above products were produced for each system concept and the permutation of the following variables:
 - Production size
 - Production period
 - Pessimistic, most likely and optimistic schedules

Integrated Cost and Performance Modeling

early9

Procurement and Development Cost Toestimation of material and development costs, and

		,								
Base Veh	icle #6:	12.7 Prot	ection/8 Knot	Speed Go Back	to	Go Ba	k to			
				Front Pag	ge 📃	Options	Page			
Weight	55.199									
Weight (Min)	50,455									
Weight (Max)	60,119	CWBS	Subsystem (Level III)	Component (Level IV)	Min Weight (Ibs)	Most Likely Weight	Max Weight (Ibs)	Hardware Cost (FY07) (Min)	Hardware Cost (FY07) (Most Likely)	Hardware Cost (FY07) (Max)
Hardware Cost		2.01								
(Procurement)	\$6,004,909.79									
Hardware Cost (Min)	\$5,408,319.20	2.01.01	Hull / Frame Structure (1.1.1)		25303	27878	30452	\$2,667,227	\$2,945,994	\$3,224,760
Hardware Cost (Max)		2.01.01.01		Hull Weldment (1.1.2)						
	\$6,652,832.91				13,434	14,927	16,420	813,384	\$903,760	994,136
NRE Cost (Most	6345 335 944 47	2.01.01.02		Hull Hatches & Panels (1.1.3)				6.050 AV		
Likely)	\$245,236,811.17	2.01.01.03		Hull Armor (1.1.4)	2,426			1.1.1	1.1.1	
Reliability	36	2.01.01.03		Hull Accommodations (1.1.5)	5,043	1		· · · · · ·		
Power (hp)	1,399	2.01.01.04		On-Vehicle Equipment (1.1.6)	1120					
Power (hp) - Min	1,272	2.01.01.05		Other Hull Parts (1.1.7)	800			• • • • •		
Power (hp) - Max	1,500	2.01.01.00		Hull Integration, Assembly, Test & Checkout	2480	2790	3100	\$591,900	\$665,888	\$739,875
Power (Electric)	9,131	2.01.01.07		(1.1.8)						
Power (Electric) -		2.01.01.08		Hull Systems Engineering/Program						
Tolerance	0			Management (1.1.9)						
Power (Electric) -		2.01.02	Land Suspension System (1.1.2)		12,119	13,249	14,380	\$420,881	\$460,543	\$500,204
Peak	32									
Power (Hydraulic)	52	2.01.02.01		Track System (1.1.2)	5,447	6,140	6,834	\$102,397	\$103,724	\$105,052
Power (Hydraulic) -		2.01.02.02		Suspension System (1.1.2)						
Min	47				3,297	3,663	4,030	\$270,000	\$300,000	\$330,000
Power (Hydraulic) -		2.01.02.03		Road Wheels (1.1.2)						
Max	58				2,380	2,380	2,380	\$6,948	\$6,948	\$6,948
DRA	4	2.01.02.04		Sprocket Carriers (1.1.2)	372	375	377	\$24,069	\$31,629	\$39,189
		2.01.02.05		Support Rollers (1.1.2)	232	300	368	\$7,467	\$8,241	\$9,015
		2.01.02.06		Track Tensioning System (1.1.2)	391	. 391	391	\$10,000	\$10,000	\$10,000
		2.01.02.08		Other Land Suspension Parts and Systems (1.1.2)						
		2.01.02.09		Land Suspension System Integration, Assembly, Test & Checkout (1.1.2)						
		2.01.02.10		Land Suspension Systems Engineering/Program Management (1.1.2)						
		2.01.03	Hydrodynamic Appendages and Steering (1.1.1)		645	787	929	\$118,546	\$137,954	\$157,361

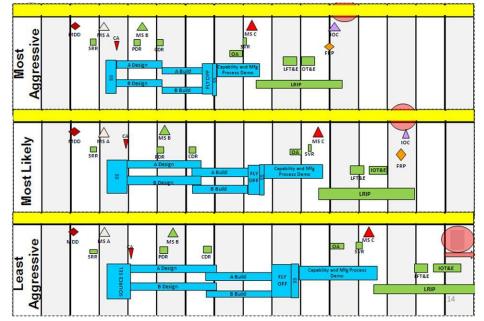
WBS is the central structure between the tools.

Estimation of material and development costs, and Vehicle Attributes using a small set of factors (e.g. weight, power)

- Manual selection of material choices to fulfill capability selections.
- Reused EFV WBS/CBS. Included18 subsystems, and their components plus PM/SE, Integration,

Testing, initial spares, and training costs.

- Dynamically calculated costs and vehicle attributes.
- "Ford.com" model pick a base vehicle and add options from there.
- Tools helped identify material issues, but human insight still needed.


Vehicle Attributes

Attribute	Value	Description/Methodology for Calculating Value
First Vehicle	Min: \$9102799	Value calculated from the Options page - summation of all first vehicle procurement
Procurement Cost	Most Likely: \$9896604 Max: \$10746441	costs from the base vehicle and options selected.
Development Cost	Min: 294935284 Most Likely: 316048523 Max: 341537658	Value calculated from the Options page - summation of all development costs from the base vehicle and options selected. Dependent on the procurement costs.
Weight: Curb	Min: 64155 Most Likely: 69664 Max: 75131	Value calculated from the Options page - summation of all weights from the base vehicle and options selected, with the addition of fuel weight (300 gal at 7.1 lbs per gal). Most likely weight is displayed.
Weight: Combat equipped	Min: 76727 Most Likely: 82236 Max: 87704	Calculated from the curb weight plus fully equipped crew and passengers. Assuming 20 Marine, 95 percentile weight (195 lbs), and combat load averaging 400 lbs per person.
Ground clearance	16	Initial ground clearance is assumed to be 16". This may then be reduced based on selection of optional underbody armor for IED protection.
Ground Pressure	11.01	Assuming tracked vehicle. Using Most Likely Vehicle Combat loaded weight. Assuming 21" wide tracks with 17' length touching the ground on both sides.
Turning radius	0	Based on capability selected by CD&I. If pivot capability is selected, then turning radius will be 0. Assuming a tracked vehicle system.
Survivability: Direct	None	Determined by which base vehicle is selected in the options page, and any applique that may be selected as an option.
Survivability: NBC	NBC: Collective Protection; ; Integrated Detection	Based on the optional components selected in the Options page.
Max Speed (Land) (mph)	Min: 60 mph Most Likely: 60 mph Max: 51.1 mph	Being calculated as a function of available engine horsepower and vehicle weight. Vehicle Combat Weight is being used. HP comes from the base vehicle selected.
Max Speed (Water) (knots per hour)	Min: 8 knots Most Likely: 8 knots Max: 8 knots	Being calculated using equations derived from a regression analysis using performance charts from NSWC Carderock. Vehicle Combat Weight is being used. HP comes from the base vehicle selected.
Miles per Gallon (Land)	0.78	Assuming JP8 diesel fuel. Uses assumed vehicle average cruising speed. Uses vehicle combat weight.
Nautical Miles per Gallon (Water)	0.11	Assuming JP8 diesel fuel. Vehicle going at max water speed - highest engine fuel consumption rate. Uses vehicle combat weight.
Range	214.909090909091 Miles on land after traveling 12 nautical miles from shore. 300 miles on land travel only, assuming level road and cruise speed of 25 mph.	Uses chosen distribution of water and land miles chosen by CDI. Calculates fuel consumption over water first, then range over land. Assuming fuel tank size, using JP8 diesel fuel. Vehicle going at max water speed - highest engine fuel consumption rate. On land vehicle goes at cruising speed over road. Uses vehicle combat weight.
DRA	Min: 3.6	Uses TRLs for all components of base vehicle and options chosen. If a component does not have a explicit TRL listed, it is assumed to be TRL 8.
Crew Size	3	Assumed to be three - going in SE OPT assumption.
Troop Load	17	Assuming a 17 Marine troop load.
Reserve Buoyancy	Min: 12.4% Most Likely: 15.3% Max: 18%	Dividing volume of water = vehicle combat weight by volume of vehicle. Uses assumed vehicle dimensions (subtracting turret portion of height.

- Based on the data from:
 - Base vehicle attributes (overall weight, power, TRL, etc.)
 - Options selected
 - SE OPT assumptions (such as vehicle being EFV dimensions)
- Tool will provide a subset of the configured vehicle attributes.
- Key Attributes
 - Combat and curb weights
 - Reserve buoyancy
 - Land range/fuel tank size

Schedule Input to LCCA

- Each SC had three different schedules constructed out to IOC
 - Most Aggressive
 - Most Likely
 - Least Aggressive
- The schedules included several programmatic assumptions or decisions normally found in an acquisition strategy:
 - Milestone targets
 - Contracting strategy
 - Number of prototypes (affects testing schedule)
 - Length of development

LCCE Tool

- Inputs
 - First vehicle costs.
 - Non-recurring Engineering costs
 - Recurring Engineering costs
 - Fuel consumption (land and water, ratio)
 - Crew size
 - Weapons systems
 - Reliability
 - Acquisition Assumptions:
 - Schedule (various activities, in months)
 - Number of prototypes
 - Number of vendors
 - Production rate
 - Total Production target
 - Contract type and competition savings

- Products and Assumptions (per element of Logistics)
 - Total Life Cycle Systems Mgt: Cost all activities, including costs budgeted by other programs and agencies.
 - Procurement: Business factors such as overhead, profit margin of contractors.
 - Development: learning curve percentages, manpower needed and their costs.
 - MILCON: Analogy to existing AAV infrastructure.
 - Operations and Sustainment (O&S): Analogy to existing AAV fleet.
 - 20 year service life.
 - Three levels of maintenance.
 - 437 hours/year operation.
 - Unit Operations: Analogy to AAV transportation costs, ammunition costs.
 - Maintenance: Analogy to equipment service life, maintenance equipment cost, replacement costs at all three levels.
 - Manpower: Crew size, known force structure for maintenance and training, and expected pay rates.

New Technique: Complexity for Estimating Reliability

Reliability impacts LCCE, yet how can reliability be estimated at such an early stage?

For new SCs:

• Modified an existing functional block diagram (from EFV) to work reliability estimates for new concepts.

For SCs based on existing AAV vehicles:

- Little data on existing components.
- Used complexity as a parameter to estimate reliability.
 - Used a modified-Boothroyd-Dewhurst (Mod-BDM) complexity metric
 - Boothroyd-Dewhurst metric requires knowing the number and types of parts, and their number of interfaces. Not realistic for SCs.
 - Mod-BDM uses a categorical estimate of parts per major subsystems.
- Analysis showed that this parametric worked well compared to FBDbased reliability estimates for new SC vehicles.

Analyzed how Mod-BDM compared to the use of the defined

Data Preparation

- Raw Data
 - 26,000 EFV parts list, assigned to vehicle subsystems.
 - Gives hierarchal association
 - MTBF estimates from Raptor for 7 ACV system concepts.
- Complexity Metrics
 - Boothroyd-Dewhurst Method (BDM)
 - Famous for Design For Assembly (DFA)
 - Three elements N_{p} : # parts, N_{t} : # part types, and N_{i} : # interfaces
 - Problem: What if you don't have parts information?

- New Complexity Metric
 - Modified Boothroyd-Dewhurst Method
 - Ordinal instead of ratio values.
 - Subdivided into major subsystems.
 - Solves BDM problem less specific info needed.
- Data Processing
 - Estimate BDM numbers for vehicles from system concept material definitions
 - Estimate the #interfaces per part type.
 - Process raw parts data using Excel.
 - Tailor a parts list per system concept.
 - Expert assignment of ordinal values to Modified BDM table.

WBS			EFV			ACV-Lethal			ACV-Fast			ACV-Tough			PSC 1			PSC 2		Alt SC		
ELEMENT CODE	WBS REPORTING ELEMENTS	Np (# of Parts)	Nt (Part Types)	Ni (# of Interfaces)	Np (# of Parts)	Nt (Part Types)	Ni (# of Interfaces															
2.01	Primary Vehicle																					
2.01.01	Hull/Frame Structure	2.5	2.0	2.0	2.5	2.0	2.0	2.5	2.0	2.0	3.0	2.0	2.0	3.0	2.0	2.5	2.0	1.5	2.0	2.0	1.5	1.5
2.01.02	Land Suspension System	3.0	2.5	2.0	1.5	1.0	1.0	1.5	1.0	1.0	1.5	1.0	1.0	2.0	1.5	1.5	1.5	1.0	1.0	1.5	1.5	1.5
2.01.03	Hydrodynamic Appendages and Steering	2.0	2.0	1.5	1.5	1.5	1.0	2.0	1.5	1.5	1.5	1.5	1.0	1.5	1.5	1.0	1.5	1.5	1.0	1.5	1.5	1.0
2.01.04	Engine System	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0
2.01.05	Automotive Drive Train System	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0
2.01.06	Marine Drive Train System	2.5	2.5	1.5	2.0	2.0	1.0	2.5	2.5	1.5	2.0	2.0	1.0	2.0	2.0	1.0	2.0	2.0	1.0	2.0	2.0	1.0
2.01.07	Auxiliary Automotive Systems	3.0	3.0	2.0	3.0	2.5	2.0	3.0	2.5	2.0	3.0	2.5	2.0	3.0	2.5	2.0	3.0	2.5	2.0	3.0	2.5	2.0
2.01.08	Turret Assembly	2.0	2.0	1.0	3.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	3.0	2.0	2.0	3.0	2.0	2.0	1.5	1.5	1.5
2.01.09	Fire Control System	3.0	2.0	2.0	3.0	2.0	2.0	2.0	1.5	1.5	2.0	1.5	1.5	3.0	2.0	2.0	3.0	2.0	2.0	2.0	1.5	1.5
2.01.10	Armament	2.0	1.5	1.0	2.0	1.5	1.0	2.0	1.5	1.0	2.0	2.0	2.0	2.0	1.5	1.0	2.0	1.5	1.0	2.0	1.5	1.0
2.01.11	Automatic Loading (Ammo Feed System	2.5	2.0	1.5	2.0	2.0	2.0	1.5	1.0	1.0	1.5	1.0	1.0	2.5	2.0	1.5	2.5	2.0	1.5	2.5	2.0	1.5
2.01.12	Nuclear, Biological and Chemical	2.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0	1.0
2.01.13	Special Equipment	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2.01.14	Navigation Systems	2.0	1.0	1.0	1.5	1.0	1.0	1.5	1.0	1.0	1.5	1.0	1.0	1.5	1.0	1.0	1.5	1.0	1.0	1.5	1.0	1.0
2.01.15	Communications System	2.0	2.0	2.0	1.5	1.5	1.0	1.5	1.5	1.0	1.5	1.5	1.0	1.5	1.5	1.0	1.5	1.5	1.0	1.5	1.5	1.0
2.01.16	Primary Vehicle Application Software	3.0	1.0	2.0	1.5	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.5	1.0	2.0	1.5	1.0	2.0	1.0	1.0	1.0
2.01.17	Primary Vehicle System Software	3.0	2.0	2.5	1.5	1.5	2.0	1.5	1.5	2.0	1.5	1.5	2.0	1.5	1.5	2.0	1.5	1.5	2.0	1.5	1.5	2.0
2.01.18	Vetronics	3.0	2.0	3.0	3.0	2.0	2.0	3.0	2.0	2.0	3.0	2.0	2.0	3.0	2.0	2.0	3.0	2.0	2.0	3.0	2.0	2.0
		44.5	35.5	31.0	38.5	31.5	28.0	36.0	30.0	26.0	35.5	30.0	26.0	40.0	32.0	28.5	38.5	31.0	27.5	35.5	30.5	25.5

Data Analysis

Variables

- Independent Complexity. Two different Complexity Measures to be evaluated:
 - BDM
 - Modified BDM
- Dependent Reliability (MTBF)

Equations

$$BDM = \sqrt{N_{p} + N_{t} + N_{i}}$$

$$Mod _BDM = \frac{1}{3} \left(\sum_{i=1}^{n} Np_{i} + \sum_{i=1}^{n} Nt_{i} + \sum_{i=1}^{n} Ni_{i} \right)$$

$$\sqrt{(N-1)(1+r_{h})}$$

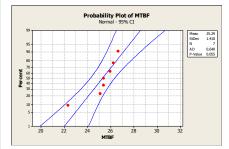
$$I_{2} = (r_{jk} - r_{jh}) \sqrt{2\left(\frac{N-1}{N-3}\right) |\mathbf{R}| + \bar{r}^{2}(1 - r_{kh})^{3}}$$
$$|\mathbf{R}| = (1 - r_{jk}^{2} - r_{jh}^{2} - r_{kh}^{2}) + (2r_{jk}r_{jh}r_{kh})$$
$$\bar{r} = \frac{1}{2}(r_{jk} + r_{jh})$$

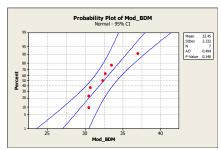
Calculated independent and dependent variable values for seven system concepts.

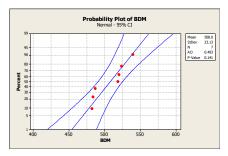
,	•			\sim	\sim			
Indep	BDM	539.9	482.3	518.5	483.8	523.9	520.3	487.2
Indep	Modified BDM	37.00	30.67	32.67	30.50	33.50	32.33	30.50
Dependent	MTBF	22.34	25.96	25.37	26.64	25.10	25.37	26.24

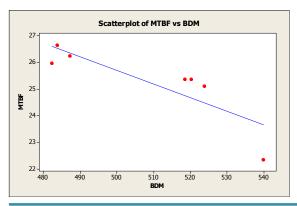
1SF

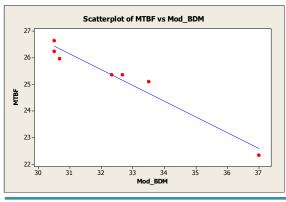
ETHAL CUON

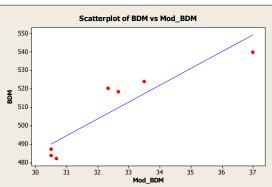

- Analysis Steps to determine the possible correlation between complexity and MTBF.
 - Calculate Data Table
 - Visually inspect for linearity
 - Determine linear vs nonlinear fit.
 - Check for homoscedasticity
 - Calculate Correlation and Regression for each complexity measure vs. MTBF.
 - Used Pearson. Both independent and dependent variables were ratio-based (even though raw data in Modified BDM was ordinal)
 - Linear regression used.


SCid


- Conducted Hypothesis Tests (95% Confidence) to ensure the existence of a significant correlation.
- Conduct Williams T₂ Test to determine if the two different correlations on a common dependent variable are significantly different.
 - Steiger, J. H. (1980) Tests for Comparing Elements of a correlation Matrix. Psychological Bulletin, 87(2).
 - Neil, J.J. and Dunn, O.J. (1975) Equality of Dependent Correlation Coefficients. Biometrics, 31(2).


Analysis Results


- Checked for normality of the data, as hypothesis tests will be used both on the individual correlations and to compare them.
- All variables roughly fit a normal distribution.



Regression Analysis: MTBF versus BDM

The regression equation is MTBF = 51.39 - 0.05137 BDM S = 0.830773 R-Sq = 71.1% R-Sq(adj) = 65.3% Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	8.4744	8.47436	12.28	0.017
Error	5	3.4509	0.69018		
Total	6	11.9253			
D				тог	0.040

Pearson correlation of BDM and MTBF = -0.843

Regression Analysis: MTBF versus Mod_BDM

The regression equation is MTBF = 44.47 - 0.5910 Mod_BDM

S = 0.323598 R-Sq = 95.6% R-Sq(adj) = 94.7%

Analysis of Variance

Source SS MS F Ρ DF Regression 1 11.4017 11.4017 108.88 0.000 0.5236 Error 5 0.1047 6 11.9253 Total Pearson correlation of Mod_BDM and MTBF = -0.978

Pearson correlation of Mod_BDM and BDM= 0.915 $H_0: corr1 = corr2$ Conduct William T_2 $H_1: corr1 != corr2$ Test, alpha = 0.05 $T_{(.025, 4)} = 2.7765$ dof = N - 3William $T_2 = 4.07$, so we reject the H_0 .

Statistical Results

- Based on the Williams T₂ Test
 - There is statistically significant evidence that the correlation between BDM and MTBF vs. Mod-BDM and MTBF are different.
 - Mod-BDM and MTBF showed a higher correlation.
 - The correlation between Modified-BDM and MTBF is a better relationship to use for predicting reliability for the amphibious vehicle domain when estimating vehicle concepts than the Boothroyd-Dewhurst Method.
 - Quicker estimation method than figuring out vehicle part counts and interfaces.
 - Resolves issue concerning a lack of detailed parts data.

SE OPT Products

- Generated 11 different system concepts (SCs) over a 12 month period with Requirements Organization involvement
- Each SC had a technical performance and attribute profile.
 - Max land speed, max water speed, reserve buoyancy, land/water range, protection, weapons capability/lethality, MTBF, and weight (curb, combat).
- For each SC, generated 27 different permutations of 3point cost estimates (low, most likely, and high)
 - 3 different Acquisition Objectives (AOs)
 - 3 different production runs
 - 3 different schedules
- Each 3-point cost estimate permutation included the following:
 - APUC, total development, and total LCCE
 - R&D, PMC, and O&M yearly cost profile.
 - LCCE cost profile broke out development, procurement, MILCON, and disposal.

System Concept Estimated Performance Attributes

		AAV				AA	V Conce	pts			1				oncepts			EFV
	Capabilities		AA	V Upgra	ade	Imp	roved A	AV-1	Imp	roved A	AV-2	· · · · · · · /	ASC ***	60		PSC 1		
	Selected	Requirements	Low	Most Likely	High	Low	Most Likely	High	Low	Most Likely	High	Low	Most Likely	High	Low	Most Likely	High	Requirements
Max Water Speed (knots)	8, 10 (FAST)	7		7			7			8			8			8	25	
Weight Growth Allowance (lbs)	1500	0		0			0			1500			1500			1500	1500	
Primary	40mm(AAV- Upg), .50cal(IAV-1, 2))	40mm		40mm			.50 cal			.50 cal			40mm	J.		30mm		30 mm
Secondary	.50 cal (AAV- Upgrade)	.50 cal		.50 cal			None			None			.50 cal			7.62mn	ı	7.62mm
Stowed	Readyx5(AAV- Upg), x3 (IAV-1, 2)	Ready x 5	1	Ready x 5			Ready x	3	Ready x 3			Ready x 3			Ready x 2			Ready x 1
Crew	3	3		3		3			3			3				3	3	
Survivability, Direct Fire	Varies	7.62 (Inherent) / 14.5 (EAAK)	7.62 (1	nherent (EAAK)	2010 Constant Sec. 1	7.62 (Inherent) / 14.5 (EAAK)			7.62 (Inherent) / 14.5 (New Appliqué)			12.7 (Inherent)			12.7 (Inherent) / 14.5 (App 360 degress) **			14.5mm (Inherent)
Survivability, Blast Protection	Varies	Level 1	1000	1 (Inher el 3+ (Ap	120.00	Level 1 (Inherent) / Level 3+ (App)**			Level 1 (Inherent) / Level 3+ (App)**			Level 2 (Inherent)			Level 2 (Inherent) / Lev 4+ (App)			Level 1
Troops	17	21		17		17			17				17		-	17	17	
Days Of Supply (DOS)	2	1		2			2		2			2*			2*			1
Curb Weight (1000 Ibs) (Land)	N/A	48	54.2	56.0	58.4	52.6	54.5	57.4	55.1	58.4	62.8	62.0	67.5	73.4	67.4	73.2	79.0	69.5
Combat Weight (1000 lbs) (Land)	N/A	61	64.4	66.3	68.6	62.8	64.8	67.6	67.5	70.7	75.2	74.6	80.0	86.0	77.6	83.2	89.1	79.2
Reserve Buoy (No IED Armor)	25%	14%	12.2%	10.9%	9.6 %	14.4%	13.0 %	11.0%	18.0%	15.1%	11.4%	28.4%	23.2%	17.5%	25.5%	20.2%	14.5%	24.00%
Max Land Speed (mph)	45	45+		45			45			45		45				45		45
Cruising Land Speed (mph)	25	25	25			25			25		25				30		25	
Op Range (Wtr/Lnd) (nm/mi)	12 / 200	3/128	3 / 286			12 / 245	8	12 / 222			12 / 200				12 / 200	12/180		
Range - Land only	300 mi	200		300			300		300			300				300	267	
Horse Power (hp)	N/A	525		600			600		1050 - 1200			1	050 - 12	50	1	100 - 12	2701	
МТВЕ	20 hrs	N/A	38.18	34.71 (Parametric Only)	31.24	37.29	33.88 (Parametric Only)	30.49	33.17	30.15 (Parametric Only)	27.14	28.86	26.24	23.62	27.61	25.1	22.59	N/A

Conclusions and Future Direction

- The USMC ACV program gives insight to the actual use of integrated cost and technical modeling during pre-MDD to inform requirements. Specifically:
 - Form core team of acquisition, cost estimation, domain and SE experts agnostic to the cost estimation result.
 - Focus on known technologies as much as possible.
 - Used the Blanchard LCCA process and multi-dimensional trade space to analyze possible operational requirements sets, while also including schedules, contracting, and other acquisition strategy issues to affect the cost.
 - Used various cost estimation techniques, but it was integrated with the technical modeling and gathering of key data (market research of component costs, weights, power consumption, and reliability).
 - Used a system dynamics approach to reaching cost and technical estimates while trying to reach capability targets. Many requirements cannot be cost estimated in isolation (i.e., linearly)
 - Multiple system concepts need to be evaluated. The final

Conclusions and Future Direction

- Seems to be the first attempt to conduct multi-dimensional trade space and cost estimates at this level of detail to generate operational requirements in DoD. (Looking for other examples!)
- Trusted Source. Going to this level of detail, and not invested in program itself, made this a trusted set of estimates.
- Future:
 - Doing this for the complete portfolio (MPC as well as ACV, AAV).
 - Change the acquisition process to do this for Milestone A.
 - Program budget based on SEOPT cost profile.
 - Develop handbook
 - Transition from SE OPT group to the actual program office. (Estimate useful only if the assumptions and decisions made in SE OPT are carried out by PM)

Primary Contact Information

- Edward M. DeVilliers
- TASC Inc./George Washington University
- Phone: 540-207-4439
- Email: emdevill@gwmail.gwu.edu