

Copyright © 2012 Raytheon Company. All rights reserved. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

Agenda

- Problem Statement
- Mission Architecture
- Elements Of A Mission Architecture
- Support Of Early Acquisition
- Summary

Problem Statement

Many acquisition programs are deemed operationally ineffective. One primary cause for this is a lack of early mission analysis, resulting in:

Poor operational assessment pre-MDD

- Solution does not address the right problem
- Poor understanding of the reason for the capability gap
- Solutions do not address the capability gaps which solve a mission need
- Systems developed where other solutions are more feasible
- Gaps in mission capabilities not addressed
 - Focuses on the wrong mission tasks
 - Fixes tasks that are not broken, and neglects some that are
 - Inadvertently creates new mission capability gaps
- Materiel solution to non-materiel problems
 - Attempts to fix policy or doctrine gaps with materiel solutions
 - Drives complex solutions to simple problems

Mission Architecture Addresses These Issues

Mission Architecture: A Problem Solution

Mission Architecture informs acquisition decision makers through an understanding and focus on the "mission needs". This results in:

- Strong operational effectiveness
 - Addresses the right problem
 - Provides good understanding of the cause of capability gap
 - Develops the systems that are needed to fill the capability gap
 - Addresses capability gaps that solve a mission need
- Gaps in mission capabilities addressed
 - Addresses mission gaps at the appropriate tasks
 - Clean integration with existing capabilities
- Materiel solutions to materiel problems
 - Facilitates proper conclusions in the DOT_LPF Study

Mission Architecting Is The First Step In The Architecting Process

Levels Of Architecture

Raytheon

Enterprise Architecture: Structure of the force and force interactions

Mission Architecture: "The job(s) to be done" System of systems Mission architecture architecture is evaluated feeds the system of against the mission systems architecture architecture System of Systems (SoS) Architecture: "The tool kit to do the job" System of systems System architecture architecture feeds the feeds and is evaluated system architecture against the SoS arch. **System Architecture:**

"The tool in the tool kit"

Understand the Force

- · How Services and Units structured
- How Services interact
- What is the command structure

Understand the Job

- Identify mission capabilities/needs
- · Capture how operations are executed
- Understand the mission flow
- Identify mission interactions
- Identify mission nodes/relationships
- Identify information exchanges

Understand SoS Interactions

- Identify SoS capabilities and needs
- Capture SoS interaction
- Understand the system flow within the SoS
- Identify system nodes/interactions/relationships within the SoS
- Identify message exchange

Understand the System

- Identify the system capabilities/gaps
- Capture how the components interact
- Understand the internal system flow

Where Mission Architecture Fits

Mission Architecture Supports Early Acquisition

Key Elements Of A Mission Architecture

- Mission Summary
 - Mission Area and Missions
 - Threat Definition
- Functional Flow
- Measures
- Nodes and Interactions
- Timelines
- Graphical Overview

Mission Summary – A Navy Example

Mission Summary Provides Focus On What Is Being Done

Threat Definition – Swarming Boats Example

Pirates

- Craft: Anything. Range from small speedboats, to fast patrol craft, to larger stolen ships
- Weapons: Crew served weapons, small arms and RPGs
- Tactics: Conceal with fishing boats, Mothership two / escort, Swarm to board
- Goal: To board and capture vessels

Scenario A Country

- Craft: Fast Attack Craft, patrol craft, etc
- Weapons: Guided missiles, torpedoes, unguided rockets, naval guns, small arms and RPGs, naval mines
- Tactics: Harass to de-sensitize, swarm with weapons and suicide boats (not suicide driver)
- Goal: Further political goals through an international incedent

Scenario B Country

- Craft: Fast Attack Craft, patrol craft, etc
- Weapons: Guided missiles, torpedoes, unguided rockets. power auns
- Carry long range weapons, more - Tactics: Loiter and harass. Individual small soci vith potential for larger scale attacks
- armored ships. Navy will not use - Goal: Project power relatively close

- range of operations rockets, naval guns
- Tactics: High speed
- Goal: Project power offshore, protect perceived sovereignty

Pirates and the Scenario A Country are Primary CSM Targets. Most Scenario B and C Countries Carry Longer Ranged Weapons

Provides the need and foundation of requirements

Threat Definition Provides Focus on Why

Threat Defined by:

- Class (country vs group)
- **Objective/ Motive**
- Weaponry
- Probability of Occurrence
- Level of Danger

Functional Flow–Navy Ship Defense Example

- Breaks down the steps in the execution of the mission
- Foundation of capability analysis and mission modeling/simulations

Functional Flow Provides Focus On How It Is Done

Attributes and Measures

Attributes and measures provide the method for evaluating the capability

Attributes And Measures Provides Focus On How Well It Is Done

Nodes and Interactions– Navy Ship Defense Example

Nodes are the elements responsible for execution of the mission

Nodes and Interactions Provides Focus Who Is Doing What

Timelines - Swarming Boats Example

Mission timelines are based on the threat and required reaction

Timelines Provide Focus On The Urgency

Graphical Overview – Swarming Boats Example

Provides A top level understanding of the mission and problem

Graphical Overview Provides The Vision

Support of Early Acquisition

Mission architectures provide:

- User needs
 - Mission
 - Tasks
 - Threats
 - Flow
- Mission solution analysis
 - Attributes and measures for evaluation
 - Bounds of the solution space
 - Interactions
- Vision
 - Graphical representation
 - Urgency

Supports JCIDS in the development of:

- Initial Capability Document (ICD)
- DOT_LPF Change Request (DCR)
- Materiel Development Decision

Mission Architectures Provide The Foundation

Summary

Mission Architecture

- Informs acquisition decision makers
- Develops an understanding and focus on the mission needs

Aids Acquisition In

- Identifying the right problem
- Understanding the cause of capability gap
- Addressing a capability gap
 - Addresses mission gaps at the appropriate tasks
 - Clean integration with existing capabilities
 - Addresses material gaps with material solutions

Mission Architecting: The Key to Successful Pre-Milestone A Systems Engineering

Questions?