
Large company practices. Small company responsiveness. Working for YOU.

“Using MBSE to Support CMMI’s

Requirements Development and

Technical Solution Process Areas”

October 24, 2012

1

Author: Frank Salvatore

(973) 634 2957

fsalvatore@drc.com

Outline

Current State of Practice

Improving the State of Practice

Definitions

How Model Based Systems Engineering (MBSE) can support

Requirements Development and Technical Solution

Planning Consideration

Conclusion

Current State of Practice

Requirements are captured in database applications

► They are often not accurate or complete

► They take a long time to develop

► They are published and viewed as documents

► It is difficult to achieve IPT consensus

Technical Solution is captured in various forms

► CAD/CAE, PowerPoint Slides, Simulations, and assembled in paper based

documents.

Often traceability is weak and hard to maintain.

Our current engineering practices lack the rigor and discipline necessary to

be explicit

Is There a Better Way?

What if the Requirements and Technical Solutions were all captured in one

location and everything was traceable?

What if we could validate our requirements at the same time we are

developing our technical solution?

What if the IPT could reach agreement to what the requirements are and what

they mean?

Can a Model Based Engineering Approach Help?

4

“You cannot engineer something if
you cannot see it.”

 Scott Workinger

MBSE - General Definition

It is about System Modeling

► A System Model is a cohesive, unambiguous representation

of what the System is and does.

It provides a description of

► Requirements

► Technical Solution

> Operational Scenarios

> System Behavior (including I/O)

> Physical Architecture (Structure, interfaces)

> Parametric Analysis and Dynamic Simulation (model execution)

► Verification Procedures

MBSE is used to produce SE products

It requires a Modeling Language (e.g. SysML) that is computer

interpretable

Systems Modeling Language (SysML) Overview

General Purpose Graphical

Modeling
► Structure

► Behavior

► Requirements

► Parametric

Supports: specification,

analysis, design, verification

and validation

Supports model and data

interchange via XMI and the

evolving AP233 standard (in-

process)

Descriptive Modeling

SysML is Derived from Unified Modeling Language (UML)

Name Change
► Class – Block

Definition

► Composite – Internal

Block

Removed Diagrams
► Deployment

(Behavior)

► Object (Behavior)

► Component (Behavior)

► Interaction(Structure)

► Communication

(Structure)

► Timing (Structure)

Large company practices. Small company responsiveness. Working for YOU.

8

9

R
eq

u
ir

em
en

ts
 D

ev
el

o
p

m
en

t

Te
ch

n
ic

al
 S

o
lu

ti
o

n

• SP1.1 Elicit Needs

• SP1.2 Transform Stakeholder Needs into Customer Requirements SG1- Develop Customer Requirements

• SP2.1 Establish Product and Product Component Requirements

• SP2.2 Allocate Product Component Requirements

• SP2.3 Identify Interface Requirements
SG-2 Develop Product Requirements

• SP3.1 Establish Operation Concepts and Scenarios

• SP3.2 Establish a Definition of Required Functionality and Quality Attributes

• SP3.3 Analyze Requirements

• SP3.4 Analyze Requirements to Achieve Balance

• SP3.5 Validate Requirements

SG-3 Analyze and Validate
Requirements

• SP 1.1 Develop Alternative Solutions and Selection Criteria

• SP 1.2 Select Product Component Solutions

SG-1 Select Product Component
Solutions

• SP 2.1 Design the Product or Product Component

• SP 2.2 Establish a Technical Data Package

• SP 2.3 Design Interfaces using Criteria

• SP 2.4 Perform Make, Buy, or Reuse Analyses

SG-2 Develop the Design

• SP 3.1 Implement the Design

• SP 3.2 Develop Product Support Documentation. SG-3 Implement the Product Design

CMMI V1.3 Continuous Representation

Requirements Development: SG-1 Develop Customer

Requirements

Elicit needs (SP 1.1) using the

Requirements model element

Or capture them in a

requirements database and

synch them with the model

SysML can be used to capture

and manage relationships

between requirements

Auto Generate Requirements

Trace Matrices and

Specifications

Auto Generate Diagrams from

Trace Matrices.

10

Captured Stakeholder
Requirements

Use MBSE to proactively identify additional requirements not
explicitly provided by customers.

11

Requirements Development: SG-1 Develop Customer

Requirements

Use “Use Case Analysis” to

capture capabilities and elicit

requirements from stakeholders

(SP1.1)

Trace Between Requirements and

Use Cases

Seeing requirements in a diagram

tends to draw out requirements

ID your Stakeholders and
get their consensus

System Uses

Diagramming and visually presenting what
has been captured

12

Requirements Development: SG-1 Develop Customer

Requirements

Use Block Definition Diagrams

(BDD) to capture where your

system of interest fits, defining

the Physical System Boundary

(TS-SP 1.1, 1.2)

Perform Domain Analysis to

understand context and further

drive out a clearer

understanding of the problem

that needs to be solved

Drive out external interfaces and

interface requirements

Update use cases and Requirements as you learn more

Show this to the ICWG and
get them to agree

Domain Context

Diagramming and visually presenting what has been
captured (SP 1.1)

13

Requirements Development: SG-3 Analyze and Validate

Requirements

Model Domain Activities with Activity

Diagram (ACT) to Elicit needs and to

capture behavior (SP 1.1) and

validate requirements

It starts to capture what the

operational concepts and scenarios

are (SP 3.1)

Provides a precise definition of

required functionality (SP3.2)

It serves the purpose of Analyzing

and validating the requirements

(SP3.3, SP3.4, SP3.5)

Establishes Functional System

Boundary

Helps to uncover and resolve

conflicting requirements.

Update everything as you learn more.

Show this to the ICWG and
get them to agree

A comprehensive
method. It will

force consistency
and drive out error

Operational Behavior

14

Requirements Development: SG-3 Analyze and Validate

Requirements

Use an Internal Block Diagram

(IBD) to elicit requirements and

identify interface requirements (SP

1.1, 2.3)

Rigorous and explicit capture and

documentation of external

interfaces

Serves the purpose of Analyzing

and validating the interface

requirements (SG 3)

Merge of physical and functional

system boundary definition

Update everything as you learn more.

Show this to the
ICWG and get them

to agree

External Interfaces

Rigorous boundary definition = boxing the problem
space

15

Requirements Development: SG-2 Develop Product Requirements

Identify behaviors and derive

functional requirements of your

system and system components

(SP 3.2-1)

Use IBD to capture the

arrangement and association

between a selected system

solution alternative

Identify Interface Requirements

(SP 2.3-1)

System Internal Interfaces

System Functions

Update everything as you learn more.

Input from Technical Solution (SP1.1, SP2.1)

Identify
System

Functions

Do this before you know what the
components are

Identify
Component
Interactions

This would be done once you know what your
components are

16

Requirements Development: SG-2 Develop Product Requirements

Capture the Systems Physical

Structure or Hierarchy with a Block

Definition Diagram (BDD)

If you know what these are begin

Developing Product Requirements

(SP2.1-1)

Else perform Technical Solution

Practices

Identify associations and

quantities

Allocate requirements to each

system component/block (SP2.2-1) Show this to the IPT and get them to agree

Update everything as you learn more.

Input from Technical Solution (SP1.1,SP 2.1)

System Structure

Identify System components

17

Requirements Development: SG-2 Develop Product Requirements

Use Sequence Diagrams, Activity

Diagrams and State Machine

Diagrams to Identify behaviors

and derive functional

requirements of your system and

system components (SP 3.2-1)

This should serve as the

authoritative source for describing

design details

Requirements can be directly

traced to design elements in the

model

Work with the IPT and
get them to agree

Results in a Functional Architecture

System Scenarios

System States and Modes

Input from Technical Solution (SP1.1, SP2.1)

System Functions

18

Requirements Development: SG-2 Develop Product Requirements

Allocate Product Component

Requirements to System Elements

(SP2.2-1)

This requires execution of the

Technical Solution Process Area

If modeled properly a change to

the model elements will invoke a

change to all diagrams and uses

of that model element

Input from Technical Solution (SP1.1, SP2.1)

Functional to
Physical

Allocation

Results in a Physical Architecture

19

Use a BDD and Parametric

Diagrams to show allocation of

product component requirements

and to capture Design

Constraints (SP 1.1, SP-2.2)

Used in to define design trade

offs (SP 2.4) and to balance the

requirements (SP3.4)

Parametric Diagrams capture how

requirements can be analyzed (SP

3.3) for validation (SP3.5) and

evaluate performance measures

(PA EV).

Requirements Development: SG-2 Develop Product Requirements

Work with the IPT and get them to agree

Input from
Technical
Solution
(SP1.1)

20

Requirements Development: SG-3 Analyze and Validate

Requirements

Use Requirements Model

Elements to capture Test Case

Descriptions

Use Requirements Diagrams to

trace between Test Cases and

Requirements

A diagram of this may help the

team relate to how many tests

are necessary to verify a

requirements and vice versa

Auto generation of Verification

Matrix

All Requirements should have Associated Verification Methods

21

Technical Solution: SG-1 Select Product Component Solutions

You will need to construct behavior,

cost, architecture, physical mock

ups, prototypes of alternative

solutions

Using SysML to capture a

description of each alternative can

help to communicate with the IPT

The Decisions can be captured as

notes in SysML

Evaluation Criteria will likely emerge

as requirements so capture them as

such

Use to establish
Decision Criteria

Decision Criteria should be consistent with the model

Technical Solution: SG-2 Develop the Design

22

Use a BDD to allocate requirements from

the logical design to each design

Alternative (SP 1.1)

Use BDD and IBD to capture an

abstraction of the Physical Design. This

is the Product Architecture and the

authoritative description of the design

The whole process is recursive till you

are at the lowest level in the system

hierarchy

The System model will organize your

product description data and serves as

the architecture showing arrangement

and interaction of system elements

Include the model with your technical data package

Requirements

Structure

Behavior

Parametrics

Technical Solution: SG-3 Implement the Product Design

23

For SW products SysML and UML can be used to auto

generate Code

For Electrical and Mechanical Systems CAD product

models can be used to directly support manufacturing,

assembly, inspection, and test

A rigorously modeled design will support resolving

problems as they come up

Model Based Systems
Engineering Can Help!!!!

24

Planning Considerations

Use people who are open to this approach and are willing to go the
extra mile. Pair them with someone who is experienced. It will
accelerate the learning process and keep them from stalling out.

Conduct a Gap Analysis (current vs. desired capability)

You will need to pick a modeling tool

You will need a Methodology that describes how, why, when, and what
to model

You will need to train even the most experienced Systems Engineers
(Language, Tool , Methodology)

You will want to pilot it on several projects to learn your own lessons.

Keep it simple at first and expand to more complex modeling problems

Model what you know best and see if everyone really understands it
the same way. (You will need to work towards this.)

25

Conclusion

Established the need to change

Discussed how Modeling supports many of the RD

and TS CMMI practices

It will take time and requires training and practice

We can’t keep operating the same way

