

Approved for public release TCPR IDS-3060

Copyright © 2012 Raytheon Company. All rights reserved. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

Topics

Background

- Definitions
- Motivation
- Raytheon Project

NDIA DT&E/M&S Meeting

- Benefits
- Barriers
- Lessons Learned
- Recommendations and Next Steps

Summary

Model Based Distributed Integration & Test Raytheon Definition

Model Based Distributed Integration and Test (MBDI&T):

The ability to perform geographically distributed system integration and test using modeling & simulation as an enabler.

This means that developers (who may be at other Raytheon sites, government sites, teammate sites or competitor sites) can operate a system enabled by modeling and simulation to inject realistic environmental stimuli, in order to exercise interfaces and demonstrate system behavior and interoperability.

Use M&S as an enabler for CT, DT, and OT as a continuum for information discovery and incremental verification among distributed partners.

Motivation Voice of the Customer: "Better Buying Power"

- Reduce the cost of testing:
 - Use existing government test capabilities
 - Reduce the travel required
 - Participate in Integrated Testing
- Increase test efficiency:
 - Improve test coverage through scientific test design (e.g., DOE)
 - Reduce number of test assets required
- Use integrated test to reduce the overall cost of acquisition:
 - Conduct operationally relevant contractor testing to find problems earlier in the development process
 - Provide data that can be used by OT&E for independent evaluation
- Increase use of Modeling and Simulation:
 - Contract Award
 - Program Execution
 - Use of government models

Raytheon Project

Copyright © 2012 Raytheon Company. All rights reserved. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

MBDIT Workshop Summary Burning Platform

Can improve to align with customer's affordability vision

- Transition from traditional paradigm where develop our systems in isolation and bring them to test events for first time integration
- Integration risk disconnects and quality escapes can be reduced
- Early discovery of problems can provide integration & test cost avoidance
- Our DoD customers are also looking to engage in Integrated Testing (Integrated DT/OT)
 - MBDI&T facilitates this by providing persistent test capability through contractor, developmental, and operational test
 - DoD has established JMETC to provide this type of capability. RFPs ask for contractors to use government test capabilities. Raytheon needs a persistent node to connect to JMETC.

MBDIT Project Desired Outcomes

- Effective Collaboration by Distributed Teams using M&S
 - Increased productivity
 - Reduced travel to support collaboration by a geographically dispersed team
 - Balance staffing needs across the company with less travel
- Effective Distributed Collaboration that Includes Government Partners
 - Increased use of government models (e.g. TENA object models)
 - Reduced schedule required to develop models.
 - Support affordability initiates to use government facilities/models (RFP evaluation criteria)
- Successful Distributed Collaboration with Our Industry Partners
 - Reduced subcontract management costs
 - Reduced travel to support collaboration by a geographically dispersed team
 - Mitigate perceived disadvantage when our competitors have equipment co-located.
- Successfully Implement Integrated Testing
 - Conduct DT&E activity with JMETC connectivity
 - Data collected is made available to OT&E for independent evaluation
 - Field systems earlier
 - Support affordability initiatives to implement integrated testing (RFP evaluation criteria)

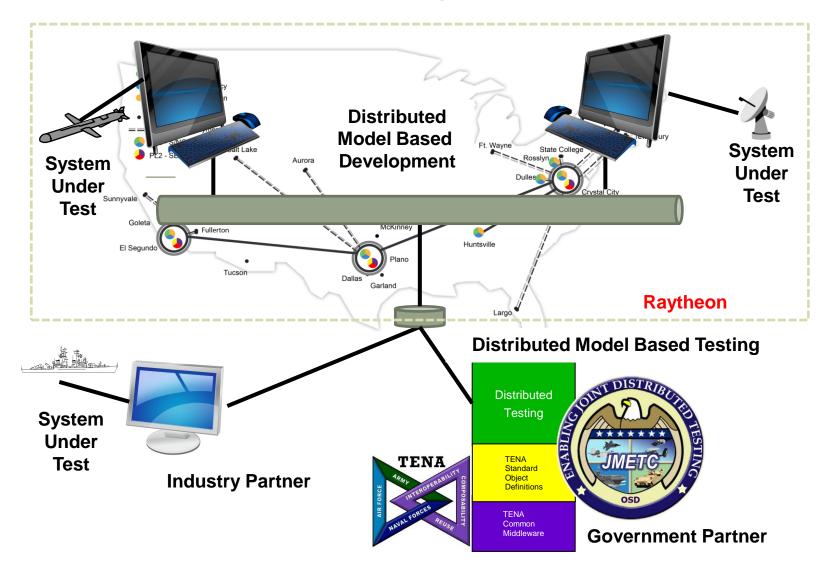
MBDIT Project Overview

Raytheon

Virtual Workshop Preparation

- Survey and interviews with IV&V and MS&A practitioners to identify existing capabilities and programs that had engaged in MBDI&T
- Briefings on lessons learned from implementing MBDI&T on their programs
- Briefings on JMETC and TENA
- Interviews of survey respondents

Virtual Workshop Conduct (April 2012)


- Process Development
- Security Concerns
- Reference Architecture Use Cases

Follow-on Workshop Conduct (August 2012)

- Briefings on MBDI&T programs
- Collect benefits, barriers, and lessons learned

MBDIT Reference Architecture OV-1: Operational Concept

Model Based Distributed Integration and Test (MBDIT)

Raytheon

MBDIT Reference Architecture Use Cases

Use Case	Description	Benefits
Concept	Access models in distributed	Collaborative trade studies using
Demo/Trade	nodes to assess or	models from different businesses,
	demonstrate performance in	demonstrate capability of a
	different configurations.	candidate configuration
Collaborative	Geographically dispersed	Collaborative development
Development	developers collaborate on the	without travel, incrementally add
	same program with access to	new capability to an existing
	models in a working and	configuration to evaluate results.
	persistent environment.	
Distributed	Configure a test environment	Perform distributed testing to
Testing	with synthetic and actual	access Hardware in the Loop
	system components to verify	(HWIL) assets in different
	system requirements.	locations, implement integrated
		testing so that data collected
		during DT&E can be made
		available for independent
		evaluation by OT&E.

Raytheon

MBDIT Workshop Results

Current State

- Pockets of 'best practice' utilize model based distributed integration and test
 - End to End Distributed Development Systems (various services)
 - Stimulation Frameworks (various programs)
 - JMETC (various demonstrations)
- Use of MBDI&T is typically the exception not the rule!

Captured Discussion Results

Inputs for NDIA DT&E/M&S meeting following week

NDIA DT&E/M&S Meeting August 21, 2012

Participants:

Catherine Parker, Jerry Feinberg, Alion Paul Huang, Army Research Lab Brandy Greenberg, Alion Louisa Guise, Raytheon Beth Wilson, Raytheon Kevin Knudsen, Boeing Thomas Holland, NAVC Michael Bell, ATEC

Benefits Include...

- Find integration issues earlier
- Test to learn in 'safe' environment
- Protect proprietary information
- Facilitate DT to OT transition
- Increase performance testing range in operating environments
- Support end to end studies throughout the program
 - 1. Proprietary could make a business case for sharing in a distributed test
 - 2. Reuse and repurpose through the product model
 - 3. Finding and injecting problems early
 - 4. Collaboration with distributed and industry partners
 - 5. Helps to integrate the components
 - 6. Supports end to end studies throughout the program
 - 7. Discover interface ambiguity and issues
 - 8. Inject product technology earlier
 - 9. Preflight analysis
 - 10. Test to learn can't afford to fail in a test we can fail in a simulation
 - 11. Simplifies the transition from DT to OT
 - 12. Use M&S to do virtual testing to reduce the physical prototype builds and test (reduce overall cost of acquisition)
 - 13. Cost effective way to do Systems and System of Systems test
 - 14. Full range of performance in the intended operating environments tests the edges that are too dangerous for OT
 - 15. Early user feedback (OT)

NDIA Meeting Results

Barriers Include...

- Security
- Lack of persistent network
- Early consideration of technical issues
- Perceived value

Disconnect between the communities (M&S and T&E)

- 1. Security. Connecting to distributed labs/networks. Takes too much time approvals/bureaucratic not a technical issue.
- 2. Lack of a persistent network. How do you get it funded? Program funded is temporary, Contractor funded needs ROI. Need planning and sustainment.
- 3. Education. Need awareness, framework, how to use it. Contractor test to OT&E. Communicate and understand the value.
- 4. What is the incentive to use M&S? Need the perceived value.
- 5. Reuse proprietary, suitability, don't know how to use it "here's a model go download it", knowing that it is there, understanding its interoperability, fidelity, know the design intent
- Need to understand the latency of the M&S in the lab/distributed test may be different than reality don't want to induce latency need to know what the latencies are – depends on the data element of interest – it may not apply – need to have the discussion – design to accommodate
- 7. Can it operate real time time more than synchronizing the start
- 8. Decrees don't work without ROI, the enablers and the funding
- 9. M&S developers are not connected to the T&E stakeholders
- 10. Different views/understandings/perspectives of the models/simulations between M&S and T&E
- 11. Unsubstantiated assumptions
 - 1. If they use the same ICD they must be able to integrate
 - 2. I can pull out a model from a repository and just use it and its available whenever I need it
 - 3. I can get the hardware whenever I need it
 - 4. Use different boundary conditions and parameters
- 12. Interaction of models (federations)
- 13. Adequate time to develop M&S for design and test

NDIA Meeting Results

Recommendations...

- Harmonize the standards for M&S and Test for the life cycle perspective (HLA, TENA, Metadata)
- Create a framework for reusing and repurposing M&S through the product model
- Establish M&S as part of statistical test design
 - Determine what tests are conducted to acquire data for model validation.
 - Fewer test events with better models.
- Recommend the use of M&S to do I&T
- Recommend establishment of JMETC as a persistent node for industry to engage in MBDI&T
- 1. Harmonize the standards for M&S and Test the life cycle perspective. HLA, TENA, Metadata
- 2. Create a framework for reusing and repurposing M&S through the product model How does a model evolve from a concept to a design to a product?
- 3. Emphasize reuse and repurpose through the product model
- 4. Understand what is out there (standards) get a baseline
- 5. Map fidelity to intended use identify intended use early
- 6. Use M&S as part of DOE.
- 7. Determine what tests are conducted to acquire data for model validation.
- 8. Fewer test events with better models.
- 9. Investigate verification by simulation as a verification method
- 10. Investigate the use of M&S to do I&T (integrate early)
- 11. Evaluate the barriers and determine root cause
- 12. Identify successes, learn from them, pass on to community

NDIA Meeting Results

Summary

- Definition: Model Based Distributed Integration and Test is the ability to perform geographically distributed system integration and test using modeling and simulation as an enabler.
- Benefits: Affordability through early information discovery and incremental verification among distributed partners
- Barriers: Security, Perceived value for investment, Disconnect between communities
- Lessons Learned: Early and continuous collaboration using common definitions

Recommendations:

- Harmonize standards
- Create framework for reuse and statistical test design
- Promote use of M&S for I&T