

The Science and Technology Business Case with Systems Engineering

Tom Archer, Carol Ventresca, Bryan DeHoff, SynGenics Bob Rapson, Jim Malas, Bob Enghauser, Bill Kesling, AFRL/RX Gerry Hasen, Universal Technology Corporation AFRL/RX Systems Engineering Team

> 15th NDIA Systems Engineering Conference San Diego October 2012

Abstract

This paper describes the use of Streamlined Systems Engineering techniques to build three classes of business case for S&T. The three classes answer three distinct questions:

- Is an S&T effort of value?
- What is the best S&T approach to a particular problem?
- How should a series of S&T candidates be prioritized?

AFRL's Materials and Manufacturing Directorate has developed a Streamlined Systems Engineering process that is flexible and adaptable to a wide range of problems, including building an S&T business case. The S&T Business Case is an objective analysis to support a decision about a commitment of resources. The Streamlined Systems Engineering approach to the S&T Business Case is structured, repeatable and creates and objective, defensible and traceable result that :

- > Documents all of the factors essential to making an investment decision
- Includes a value proposition, an explicit declaration of estimated costs and a rationale that describes why the value is believed to be greater than the cost.

The term *Business Case* immediately suggests traditional financial measures that can be awkward or entirely inappropriate in S&T. Return on investment (ROI), internal rate of return (IRR), net present value (NPV) and payback are common examples. The *value proposition* approach is an effective way to deal with the economic imperatives.

The S&T Business Case is inherently discomforting and difficult, but the structured Streamlined Systems Engineering approach is a step-by-step process that is effective and powerful for focusing and defending S&T.

This work was completed under Contract GS-10-F-0095T, Order No. GST0511BM0024, Subcontract Number: DSC8047. The Authors acknowledge the support of AFRL/RX Systems Engineering Team

Outline

- Business case: working definition
- Three classes of business case
- Desirements (requirements)
- Alternatives
- Evaluation of alternatives (math)
- Case example

Discussion

Business Case A Working Definition

A Case is the totality of relevant facts.

nGenics

The S&T Business Case is identical to any "Business Case" in purpose, which is to build an objective analysis to support a decision about a commitment of resources. The only real difference, nuance may be a better word, is the inherent immaturity of the science or technology, which means that relevant factors are more likely to be educated guesses than known details.

Business Case A Working Definition

SynGenics

- Documents all of the factors essential to making an investment decision, including the supporting backup.
- Includes a value proposition: an explicit declaration of estimated costs and a rationale that describes why the value is believed to be greater than the cost.

S&T Business Case Difficulties

- It requires that we anticipate and analytically define an unknown and unknowable future.
- Supporting data has to be *created* from multiple *ad hoc* sources and it has to be consistent.
- Critical external elements have to be identified and evaluated such as enabling technologies and the systemic environment.
- Each business case is different; skilled judgment is required to identify the relevant issues.
- The Business Case developer's primary job and job skills are technically focused; case development may require additional training or support.

Three Classes

- The "Budget" business case: A single investment candidate is evaluated for its ability to meet a set of objectives or desirements.
- The "Tactical" business case: Multiple alternatives with similar functional characteristics are compared for their ability to meet a set of objectives and the "best" are identified.
- The "Strategic" business case: Multiple alternatives, functionally dissimilar investment candidates are prioritized based upon their anticipated ability to achieve organizational objectives. best" are identified.

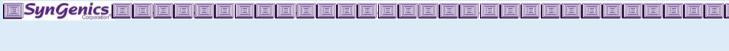
Streamlined Systems Engineering

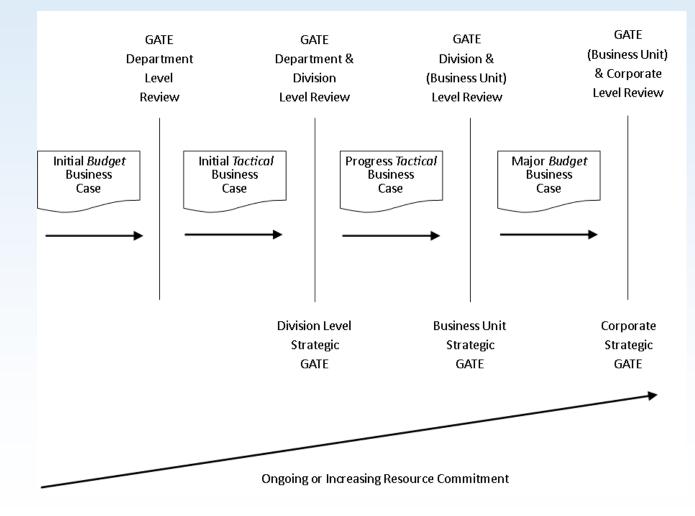
SynGenics

S&T Business Case Based Upon SE Principles

- Measurable, validated objectives (desirements) in a systems context
- Alternatives that consider the system context for the application of the technology
- A supportable assessment of the expected performance of the investment candidate against those objectives and an estimate of the consequences of failure. (evaluation of alternatives)

Comparison

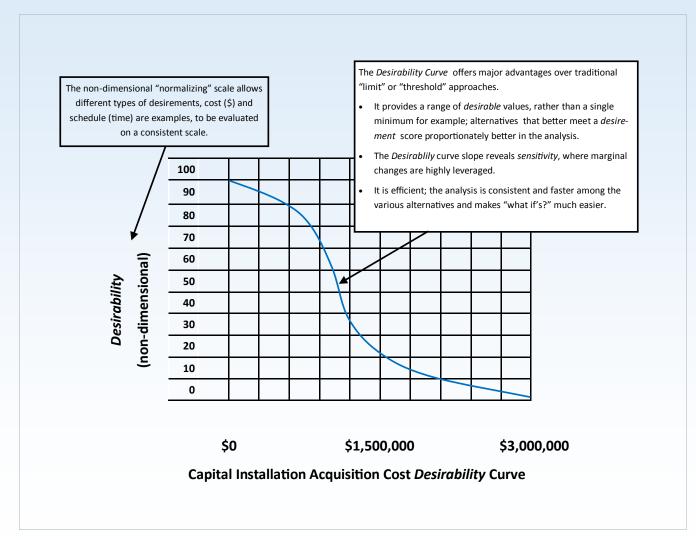




Process Steps	"Typical" Business Case	Systems Engineering Principles Applied
Team	Investment candidate "owners"	"Owners" and interested parties including
	only	prospective end users (customers)
Desirements	Description of the investment	Measurable objectives validated with the rationale
(Requirements)	candidate with key features. May	for the objectives.
	include qualitative objectives such as "improved" or "enhanced."	
Alternatives	Only mentioned if the investment	Alternatives (technical competitors) are explicitly
	candidate is a replacement	identified when appropriate
		Systems view: how does an alternative or
		investment candidate fit in the end user system,
		what enabling technologies have to be in place and are why are those enablers expected to be in place
Evaluation	Self-evident or non-existent with	Structured analysis of the investment candidate's
	respect to objectives, but usually	expected performance to the objectives (including
	includes some kind of cost analysis	costs), may include modeling and simulation.
		Includes an estimate of the consequences of either
		not making the investment, or failing to meet
		objectives
Plan	Recommendation to proceed.	Recommendation to proceed or not, with an
		execution path and supporting rationale

Investment Decision "Gates"

S&T Business Case Element Desirements


- Desirements, objectives or requirements in systems engineering terms. Desirements define success.
- Desirements are characterized by:
 - label and brief description
 - unit of measure, or, for qualitative desirements, a scale
 - weighting factor relative to other desirements
 - a validated objective target with upper and/or lower limits
 - a desirability curve

SynGenics

Desirability Curve

SynGenics D D D D

S&T Business Case Element Alternatives

SynGenics

- Alternatives within S&T are the technologies that are expected to meet the desirements.
 - For the Budget business case there is only one alternative.
 - For the Tactical business case, a technology alternative should be defined within a systems context or clearly understood that it is not.
 - A systems view does not imply that an S&T effort has to solve all the systems issues. It does mean that, within the business case, the state and expected evolution of the system environment be explicitly recognized and validated.
- > An *alternative* is often represented by a Quad chart

S&T Business Case Element Documentation of an *Alternative*

Operational Capability:

- Current configurations require 4m kec (9 mph) wind speed to generate power. (Date that's not average wind speed.) Averagespeed at Kabul. Afganistan and Bagh dad, Iraq exceed the minimum. Four months of the year the average wind speed at Panama City, Florida (Tyndall proximity) does not.
- $r_{\rm D}=Wind {\rm speed}$ at 150° above ground level is typically 2X to 3X that at the surface. So effective wind turb ines a receivated .
- 3) Cost of own ership total cost of ownership is currently estimated to be equivalent to commercially available grid electricity in the United States at \$0.06 to \$0.10 per kwh. Thist does not include the cost of erecting turbines at remote sites and connecting them to the grid.
- 6 Commercial catalog item from 1KW to 3MW. Largersites engineered to order.
- 5) The best use of wind power stadep kyred base may be as supplemental where full required capacity is in place using say generators or fuelcels and wind energy, when a valiable, is used to reduce fuel.

Proposed Technical Approach:

SynGenics

Reed to be evaluated for suitability and impact issues at a deployed base:

- Field erection issues may necess itstespecial to wer construction.
- Height may be an attractive target and a radarp roblem at a dep loyed air base.
- Low frequency bladed riven no isem sy beb oth irritating and a medical issue (not verified).

Altern stived exigns are in concept, could be evaluated.

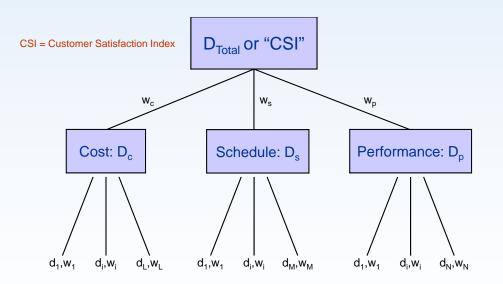
 Vertical axis a kern at ives with lower profiles, helix designs to operated at lower wind velocities and without the no is eproblems.

Cost and Schedule:

Acquisition cost: Themostpublicly available information on aggregate costs is based on T. Boone Pickens purchase of 66715 Merwind turbines from GE at \$3 million each estimated installed cost. Additionally Pickens estimated another 25% to connect to the grid from the remotes iteracross 5 counties in the Texas path and be.

Study costs to evaluate suitability to deployed bases and a kernatived esigns:

S&T Business Case Element Evaluation of *Alternatives*



1

Weighted geometric mean with desirability for normalization

SynGenics

$$CSI = D_{Total} = [(D_c)^{w_c} (D_s)^{w_s} (D_p)^{w_p}]^{w_c + w_s + w_p}$$

CSI = Composite Satisfaction Index

Why A Weighted Geometric Mean

Weighted Geometric Mean

With a geometric mean, if an alternative fails to meet any desirement, it fails.

SynGenics a

Weighted Arithmetic Average

$$D_{c} = \frac{w_{1}d_{1} + w_{2}d_{2} + \dots + w_{L}d_{L}}{w_{1} + w_{2} + \dots + w_{L}}$$

$$D_{c} = [(d_{1})^{w_{1}} (d_{2})^{w_{2}} \cdots (d_{L})^{w_{L}}]^{\frac{1}{2}}$$

$$d_{2} = 0 \text{ implies } D_{c} = 0$$

$$D_{c} = \left[(d_{1})^{w_{1}} (d_{2})^{w_{2}} \cdots (d_{L})^{w_{L}} \right]^{\frac{1}{\sum_{i=1}^{L} w_{i}}}$$

 $d_2 = 0$ does not imply $D_c = 0$

Tactical Business Case

SynGenics

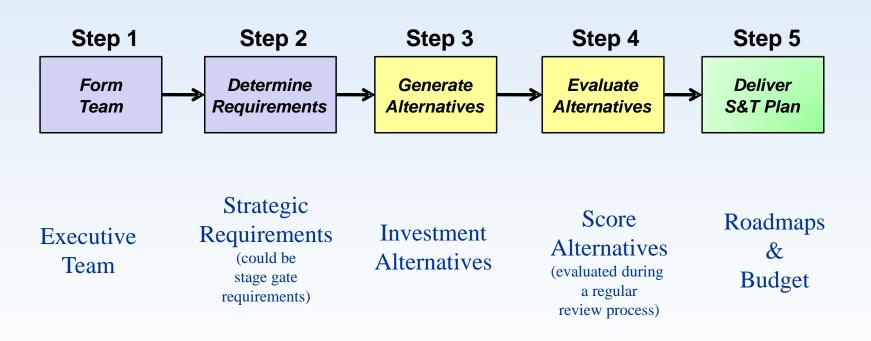
An example based upon an evaluation of energy alternatives for a remote location

Systems Engineering Scorecard - Con't: Composite_Scorecard						De	sirem	ent Ty	ре					ý
Remote Site Energy Alternatives		Cost		Human Factors		Logistics		Operating Environment		renomance	Schedule		Affordability	
Weight	_	1			:	2		1		2		1	D	Risk
Technology Alternative	d	P _F	d	P _F	d	P _F	d	P _F	d	P _F	d	P _F		
Tri-Generation - Recovery	0.800	0.1587	1.000	0.0000	0.962	0.0450	1.000	0.0228	0.791	0.5114	1.000	0.0000	0.918	0.6169
MicroTurbine w/ Conventional Generator	0.463	0.3085	1.000	0.0000	0.735	0.1965	1.000	0.0228	0.583	0.2921	1.000	0.0000	0.760	0.6244
Fuel Cell - Solid Oxide with bulk storage and Integrator	0.255	0.0668	1.000	0.0000	0.995	0.0450	1.000	0.0228	0.758	0.4182	0.271	0.0228	0.698	0.5161
Biofuel Generation - Biodiesel Ponds	0.000	1.0000	0.000	1.0000	0.000	0.5889	0.500	0.1587	0.000	1.0000	0.909	0.0000	0.000	1.0000
Superconductor Generators	0.000	0.5334	0.894	0.0002	0.000	0.5114	1.000	0.0228	0.000	1.0000	0.000	0.5007	0.000	1.0000
Solar - Photovoltaics with Integrator and Bulk Storage	0.000	1.0000	0.000	0.5000	0.000	1.0000	1.000	0.0228	0.000	1.0000	0.572	0.0000	0.000	1.0000
Solar- Thermal Concentrator, Steam Generator	0.000	0.5000	0.000	1.0000	0.000	1.0000	1.000	0.0000	0.000	1.0000	0.572	0.0000	0.000	1.0000
Chemical Batteries - Bulk Storage General Technolo	0.000	1.0000	0.000	0.5000	0.000	0.8778	1.000	0.0228	0.000	1.0000	0.862	0.0000	0.000	1.0000
Wind Turbine with Integrator and Bulk Storage	0.000	1.0000	0.560	0.0228	0.000	0.9891	1.000	0.0228	0.000	1.0000	0.572	0.0000	0.000	1.0000
MicroTurbine with Super Conducting Generator	0.000	0.6133	0.894	0.0002	0.995	0.0450	1.000	0.0228	0.804	0.5114	0.000	0.5007	0.000	0.9560
Nuclear with Integrator	0.348	0.1587	0.000	0.5114	0.000	0.8948	1.000	0.0228	0.943	1.0000	0.716	0.0000	0.000	1.0000
Space Based Solar Power - Beamed	0.000	0.5114	0.560	0.0228	1.000	0.0450	1.000	0.0228	0.932	0.0450	0.311	0.0228	0.000	0.5846
Conventional Generator with on-site Bio-diesel	0.000	1.0000	0.000	1.0000	0.000	1.0000	1.000	0.0228	0.000	1.0000	0.862	0.0000	0.000	1.0000
SettionPer:Flexible_Over_Shelter_	0.492	0.1587	1.000	0.0000	0.735	0.1965	1.000	0.0228	0.000	1.0000	0.862	0.0000	0.000	1.0000
Biodiesel from Algae Reactors with Conventional Ge	0.000	1.0000	0.000	0.5000	0.000	1.0000	1.000	0.0228	0.000	1.0000	0.000	0.5007	0.000	1.0000

Tactical Business Case

SynGenics.

Each <i>desirement</i> type is a composite of several individual <i>desirement</i>	nts.	e iti	on of	ene	ergy a	alter	nativ	ves fo	or a	remo	ote lo	ocati	on	
Cost, for example, includes						De	sirem	ent Ty	pe					_
development, acquisition an operating costs.			Human	Factors	- ocietioe	Logistics	Operating	Environment		renormance		Schedule		Affordability
Weight		1		•	2	2		1	2	2		1	D	Risk
Technology Alternative	d	P _F	d	P _F	d	P _F	d	P _F	d	P _F	d	P _F	_	
Tri-Generation - Recovery	0.800	0.1587	1.000	0.0000			io of	00.0	ltorr	otiv	o to	$m \sim \infty$	ton	169
MicroTurbine w/ Conventional Generator	0.463	0.3085	1.000	0.0000		allul	e oi	ana	illen	auv		mee	t any	
Fuel Cell - Solid Oxide with bulk storage and Integrator	0.255	0.0668	1.000			C	desir	eme	<i>nt</i> m	eans	s bot	th its		161
Biofuel Ge Every alternative is eva	luate	ed w	ith	1.0000		das	irom	onto	core	and		mpos	otic	000
Supercond				0.0002	_	ues						npos	SILC	000
			U		-1		S	score	e will	be z	zero.	/	1	000
both a <i>desirement</i> sco	ore a	nd a	à	1.0000		0.0770	4 000	0.0000	0.000	4 0000	0.000			000
Chemical Wind Turb COMPOSITE SCOR	Έ			0.5000	0.000	0.8778	1.000	0.0228	0.000	1.0000	0.862	0.0000	0.000 0.000	1.0000
		0.6422	0.894	0.0228	0.000	0.9891	1.000	0.0228	0.000	0.5114	0.000	0.0000	0000	0.9560
MicroTurbine with Super Conducting Generator Nuclear with Integrator	0.000	0.6133	0.894	0.0002	0.995	0.0450	1.000	0.0228	0.804	1.0200	0.000	0.0007	0.000	1.0000
Space Based Solar Power - Beamed	0.346	0.1587	0.560	0.0228	1.000	0.0940	1.000	0.0228	0.943	0.0450	0.716	0.0000	0.000	0.5846
Conventional Generator with on-site Bio-diesel	0.000	1.0000	0.000	1.0000	0.000	1.0000	1.000	0.0228	0.002	1.0000	0.862	0.0220	0.000	1.0000
Setter Provide Setter State Storage St	0.492	0.1587	1.000	0.0000	0.735	0.1965	1.000	0.0220	0.000	1.0000	0.862	0.0000	0.000	1.0000
Biodiesel from Algae Reactors with Conventional Ge	0.000	1.0000	0.000	0.5000	0.000	1.0000	1.000	0.0228	0.000	1.0000	0.000	0.5007	0.000	1.0000

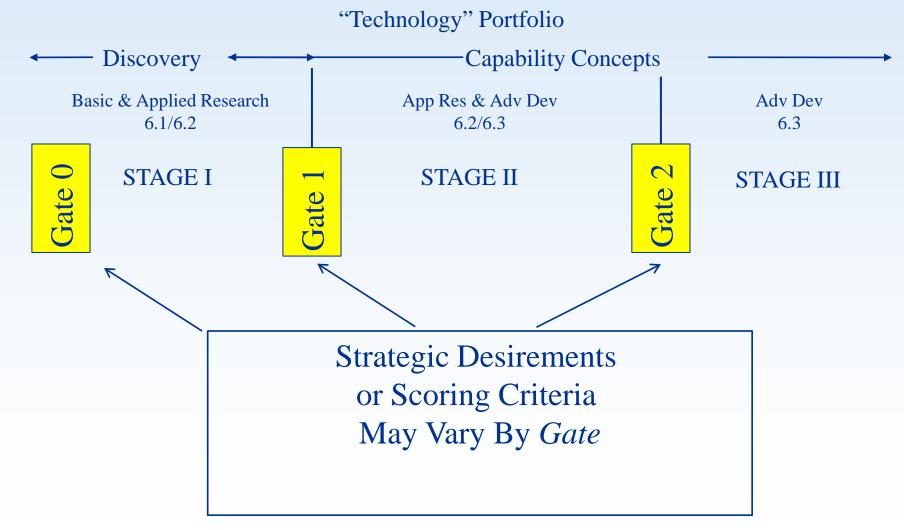


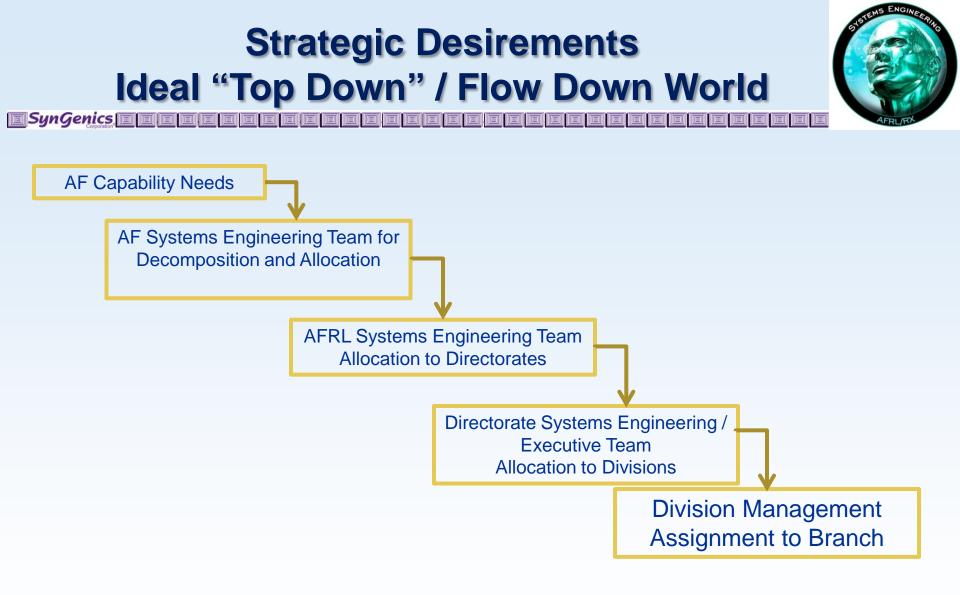
Strategic Business Case

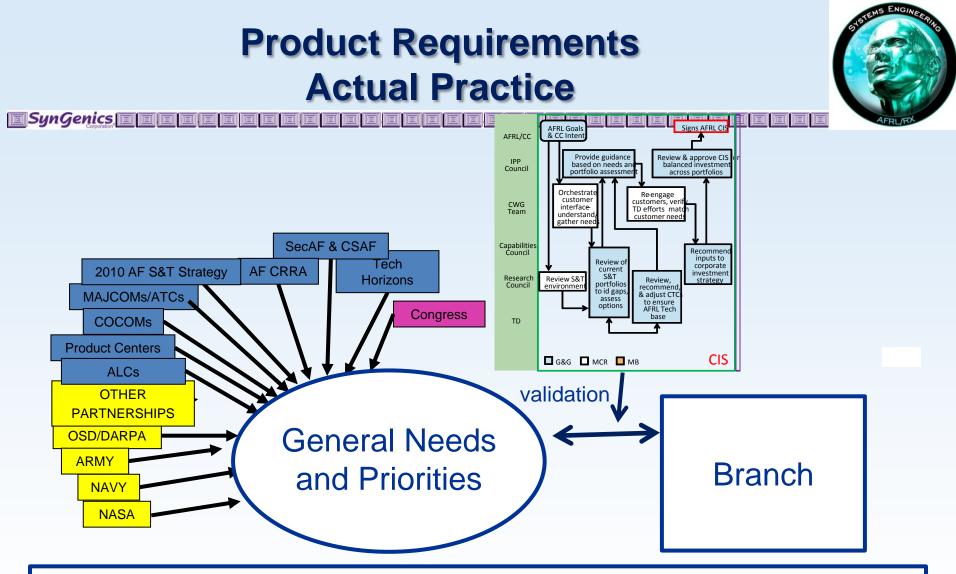
SynGenics a

Streamlined Systems Engineering Same Basic Process – Different Details

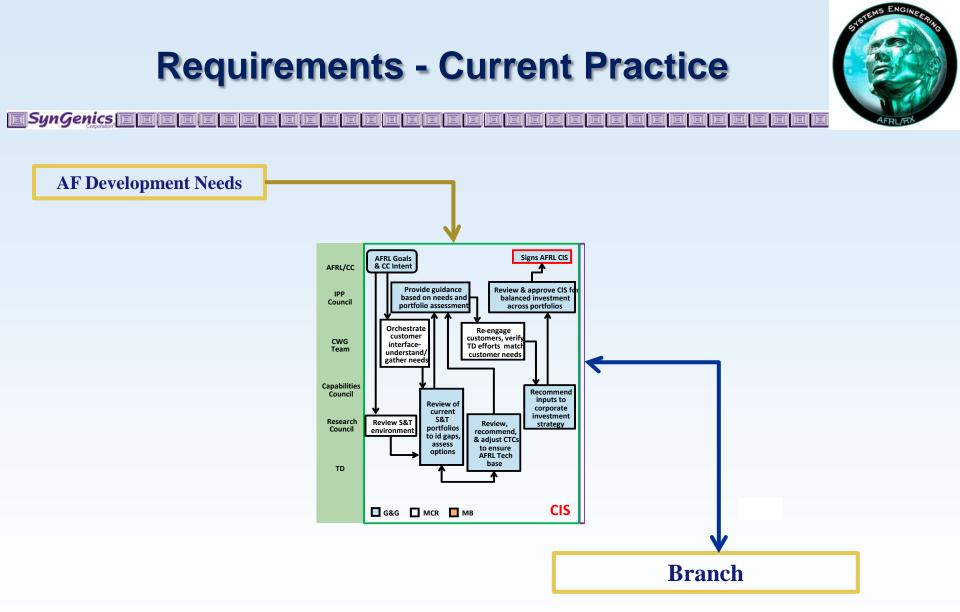
SynGenics




S ENGI


Desirements Reflect Level of Management

SynGenics



SME's at the Branch level respond to their understanding of explicit external needs and priorities (pull) and propose new capabilities (discovery and push) in response to their understanding of the user environment.

MS ENGIN **Strategic Linkage to Products** SynGenics AFRI /F **Technical** Strategic Level **Executive Level** Level Improve the sustainment, affordabiliy and Desirement 1 Project 1 availability of legacy weapon Reduce cyber systems vulnerabilities while emphasizing mission assurance Develop Project 2 autonomous systems and human **Desirement 2** performance augmentation Product 3 Reduce energy needs Provide robust situation awareness Product 4 **Desirement 3** Enable long range precision and persistent strike Product 5 Support needs of the nuclear enterprise Desirement n Product n

Distribution A: Approved for Public Release, Case Number 88ABW-2012-5949

Formulate Desirements For Strategic Levels (examples)

- Meets one or more strategic objectives
- Clearly defined, actively engaged customer or sponsor (pull)
- Customer desirements are explicit and understood
- Success is defined, such as an agreed upon ATD and timing
- Meets discovery criteria (push)
- Is a unique AF skill, urgent requirement or unique requirement.
- Represents the best approach among alternatives or one of the best approaches
- Is a critical technology or critical enabling technology
- Requires another enabling technology that is, or is not funded
- Financial
- Risk

SynGenics

Directed effort

The Eight Questions

	Applied 1	Research (6.2) Question and	Answer Matrix
Key Question	Question Breakdown	What the Program Manager should know about his or her program	Color Assessment Basis B=Excellent G=Satisfactory Y=Marginal R=Unsatisfactory
1. Who is your customer?	Who are the external customers, users, sponsors, & other stakeholders?	Money source; report recipient; SPO; MAJCOM	B: Best practice candidate - exceeds Green. Internal and external customers identified to include targeted SPO(s) and MAJCOM users.
	What does each bring to the How is each one involved in the program? Who are the internal customers, users, sponsors, & other stakeholders? How is each one involved in the program?	Funding; interest Receive report; Interested in using technology 6.3 Program Manager who is interested; Technical Directorate or Division Interested in using technology	 G: Key customers identified and actively involved, providing funding and management commitment; 6.3 customer buy-in secured. Y: Know who might be interested, but have no buy-in, formal or informal; 6.3 manager within directorate provides verbal advocacy. R: No attempt to find customers interested in using technology.
2. What are customer's requirements?	How has each customer, user, sponsor, & other stakeholder defined what they expect you to deliver?	MOU; CDRL; Other contractual requirements; DTIC Final Report	 B: Best practice candidate - exceeds Green. Uses validated tools to help track and manage customer requirements derived from a formal agreement, e.g., Technology Development Strategy (TDS). G: Key customer requirements clearly and quantitatively defined in a written document (MOU,TDS, CDRL). Y: Some customers provided general description of desired deliverable(s). R: Customer requirements are poorly defined.

AFRL Systems Engineering Guidebook, 5 July 2012, Companion Document to AFRLI 61-104, Table 4.2

Strategic Desirements (draft example with scoring)

	SE Projects Ass	sessment 6.2 Strate Proposed (Draft) Weightings TBD	gic Desirements
			Proposed Scoring Basis 1 to 10, 10 is best
Desirements	Desirement Breakdown	What the Program Manager Should Know	Scoring Criteria
1. ACTIVE/ENGAGED END USER Every project or program	Who are the external customers, users, sponsors, & other stakeholders?	Money source; report recipient; SPO; MAJCOM	9-10: Internal and external customers identified to include targeted SPO(s) and MAJCOM users who are funding or will fund a phase of the program.
actively engages a prospective end user of the S&T	What does each bring to the program?	Funding; interest	5-8: Key customer(s) identified and actively involved, by participating in requirements development, reviews or providing funding and management commitment; 6.3 customer buy-in
	Who are the internal customers, users, sponsors, & other stakeholders?	6.3 Program Manager who is interested; Technical Directorate or Division	secured. An official POC exists.3-4: A customer or prospect has expressed interest by committing to participate, but has not participated in an active way.
	How is each one involved in the program?	Interested in using technology	 2: No customer or prospect is directly involved, but potential end users have been identified 1: No customer or prospect is directly involved; end users have not been identified.

Strategic Desirements - 2 (draft example with scoring)

SynGenics

Desirements	Desirement Breakdown	What the Program Manager Should Know	Scoring Criteria
2. KNOWN/AGREED REQUIREMNENTS	How has each customer, user, sponsor, & other		9-10: Uses validated TMATT/IPPD tools to help track and manage fulfillment of customer requirements derived from a formal Technology
The customer's requirements, including	stakeholder defined what they expect you		Development Strategy (TDS).
cost, performance and other relevant parameters that define success are	to deliver?		6-8: Key customer requirements clearly and quantitatively defined in a written requirements document (MOU, TDS, CDRL).
known and agreed upon.			
			2 – 5: Some specific customer provided general description of desired deliverable(s), but the
			customer has committed to work to (jointly) develop requirements.
			0-1: No customer, no requirements or the requirements are not specific.
3. DEFINED/AGREED DEMONSTRATION PLAN	What are the exit criteria you have to meet to transition	Show how technology could meet a need	9-10: Full, formal test or demonstration plan complete.
An agreed upon technology or project success demonstration	technology to the next phase?		5-8: Formal test ore demonstration plan is outlined, including brief list of resources required, activities and data to be collected.
plan has been defined.			3-5: General expectations for a demonstration are known, but there's no demonstration plan.
			0-2: Notional thoughts about what a demonstration plan would be

Strategic Desirements - 3 (draft example with scoring)

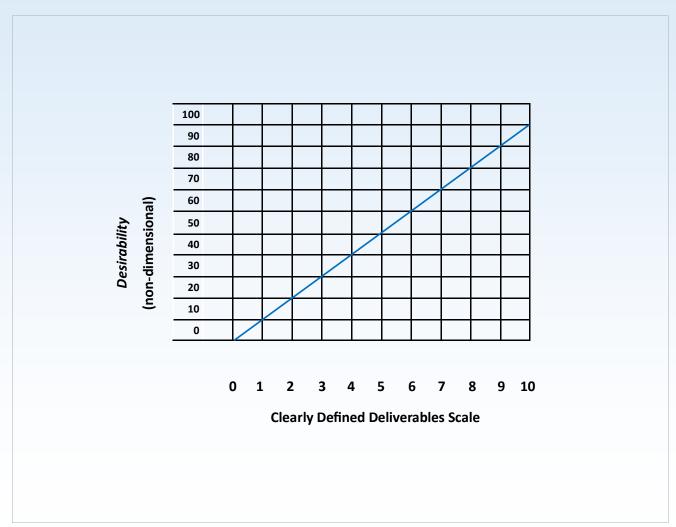
What the Program Desirement **Manager Should Desirements Scoring Criteria Breakdown** Know 8. PROJECT PLAN Name of principal 9-10: Research team organized as an Integrated Describe the program structure in technical. investigator and/or Product Team with clear responsibilities and a CREATED written charter, schedule and budget. contractual, financial, contractor. PI / A formal, feasible and managerial terms contractor's experience project plan, including (including the roles and and credentials, who 7-8: Formal risk management plan incorporated into program structure. Key program members tasks, schedule, budget responsibilities of else is on project team, and staffing has been individuals and where will work be have necessary skills, knowledge, time and ability prepared. teams/IPTs). done, what type of to apply to effort; Adequate allocation of resources (e.g., facilities and funding structure). Both contract (BAA, PRDA, etc.) functional and physical Work Breakdown Structure (WBS) developed to guide program effort. What is the work Functional work breakdown structure (or breakdown structure for 4-6: Risk mitigation marginally incorporated into equivalent) of your the work you're trying program management structure. Program structure program? to do not well defined; individual responsibilities poorly understood. Some key program members lack necessary experience and time to apply to effort. Describe your Formal risk Some needed resources (e.g., facilities and funding program's risk management program; structure) may be lacking. WBS in place, but not how do you intend to management process. sufficiently developed. deal with risk drivers identified above? 0-3: Risk not adequately addressed in program management structure. Key program members do not have necessary skills, knowledge, time and ability to apply to effort. Inadequate allocation of resources. No physical or functional WBS.

Strategic Desirements - 4 (draft example with scoring)

SynGenics

Desirements 9. TRANSITION PLAN A business-based technology transition plan has been approved by the prospective end	Desirement Breakdown What formal or informal transition agreement(s) do you have and with whom?	What the Program Manager Should Know MOU; Informal agreement with 6.3 PM; Using command / SPO expressed interest	Scoring Criteria9-10: Formal transition agreement with 6.3 program manager; using MAJCOM / SPO formally identifies transition window(s) of opportunity.5-8: Formal transition plan available in draft, not yet fully coordinated. Potential additional customers
user.	What potential customers do you still need to develop transition plans for and what is your plan to develop these?	Who else might be interested? How do you plan on telling them about your technology?	 included in the RDT&E effort. 3-4: Developed transition plan for some of the key customers. Plan to include potential customers in the RDT&E effort, but they're not there yet. 0-2: Nonexistent transition plan. No plan to include additional customers in the RDT&E effort.
10. CLEAR AIR FORCE STRATEGIC VALUE This project has clear strategic value to the Air Force.	Does this represent an AFRL core competency commitment or is it so urgent it's an AFRL [command] priority, or it's a unique operational need.	New or enhanced strategic capability; New or enhanced tactical capability; urgent and compelling challenge, need or application is significantly different from commercial, industry or academia unwilling or unable; AF is SME, AF is SOA, AF commitment	 9-10: Meets more than one strategic criterion. 5-8: Meets at least one of the three strategic criteria. 3-4: The strategic value is tentative, may depend on additional understanding. 0-2: No strategic value.

Strategic Desirements - 5 (draft example with scoring)


SynGenics

Desirements	Desirement Breakdown	What the Program Manager Should Know	Scoring Criteria
11. TECHNOLOGY INTEGRATION	Does this technology necessarily fit within a specific system, either	Should have at least a notional architecture or functional breakdown if	9-10: It's part of a clearly defined system; interfaces are understood and any other technologies essential to this technology already
Integration of the technology has been	real or conceptual?	this is part of a system.	exist.
evaluated and is understood is not an obstacle to adopting the technology.	Are there other enabling technologies that are essential for this technology's	(A material, say a composite, could stand alone or it could be a project because it's an	6-8: The technology stands alone or its systemic role is well understood and there are no expected gaps in implementation.
	function that are not part of this project/program?	essential part of a system.)	3-5: The technology is part of a system but there are gaps in understanding or other essential parts of the system.
	Are there other		0-2: Don't know or know, but the systems impacts
	technologies that are either not developed,		haven't been formally addressed.
	or are also in		
	development that are essential to the success		
	of this technology.		

Clearly Defined Deliverables Desirability Curve - Linear

SynGenics

MS ENGIN

Clearly Defined Deliverables Draft Scale

SynGenics

10	Test or demonstration plan approved.	5	Test or demonstration plan outlined, significant
			deficiencies or uncertainties in understanding customer requirements or the ability to meet them.
9	High probability draft test or demonstration plan will be approved.	4	A test or demonstration plan exists, but there are no customers involved.
8	Demonstration plan tied to customer requirements has been developed; under review by customer.	3	Partial test or demonstration plan exists, but there are no customers involved, low confidence customers are interested or will participate.
7	Demonstration plan draft exists, based upon customer input.	2	A partial test or demonstration plan exists, but no customers are involved and there is a low probability objectives will be achieved.
6	Test or demonstration based upon customer requirements outlined, including resources required, activities and data to be collected.	1	Notional or qualitative test or demonstration plan, no customer involvement.
		0	No test or demonstration plan, or no confidence it can be executed or meets customer expectations.

The Mathematics of the Previous Spreadsheet

$CSI = [(D_c)^{w_c} (D_s)^{w_s} (D_p)^{w_p}]^{\frac{1}{w_c + w_s + w_p}}$

SynGenics

CSI = composite score index D = desirability score for a product to a desirement w = weight for the desirement

Summary

- The Business Case with Systems Engineering
 - Measurable, validated objectives (*desirements*) in a systems context
 - Alternatives that consider the system context for the application of the technology
 - A supportable assessment of the expected performance of the investment candidate against those objectives and an estimate of the consequences of failure. (evaluation of alternatives)
- The Streamlined Systems Engineering process is flexible and can be used for all three classes of business case:
 - It offers comparability at the level competing for resources
 - It offers a consistent framework for discussion and negotiation
 - It is a tool for building the business case; it does not "make" decisions; it empowers the decision maker
- > The process is efficient
 - Interested parties define the expectations
 - It offers consistency, traceability, and defensibility

Contact Information

SynGenics

Thomas Archer SynGenics Corporation 5190 Olentangy River Road Delaware OH 43015 Email: archer@syngenics.com Direct phone: 614-442-7858

This work was completed under Contract GS-10-F-0095T, Order No. GST0511BM0024, Subcontract Number: DSC8047

Island Winery

Reliable Energy Problems

- 30 year old winery
- Electricity no longer subsidized by government, price increasing
- Electricity is unreliable, out at least an hour a week
- No electricity for 6 to 8 contiguous days at least once a year

Island Winery

- If the winery loses the ability to promptly process and chill their juice during the harvest, they will lose a portion of their crop.
- If electricity is out, winery loses substantial daily income from visitors who tour, eat and buy wine by the bottle and case
- The pavilion is available for events, a typical event sells at least 50 cases of wine
- The winery is no longer able to buy insurance for losses resulting from weather or electrical outages.

Island Winery – Initial Thoughts

STREMS ENGINEERING

- The problem is the consequences of unreliable energy, primarily costs but also the intangibles of not being able to serve customers.
- In the worst case, they could lose half a crop, they're out a minimum of \$3 million in marginal revenue, maybe more, but they decided not to worry about that unless it proves to be important. The somewhat arbitrary conclusion was that the cost of securing reliable energy would be attractive if it were under \$500,000, but could be considered at up to \$3 million.
- Different parts of the operations can survive without electricity for different periods of time but with a couple of exceptions, there was no agreement on what those were. Some thought the pavilion's customers would accept an hour's inconvenience, others thought ten minutes might be too long, especially if it resulted in major delays in the restaurant's kitchen. The conclusion was that five minutes or less of interruption was a problem with negligible consequences. A half hour was the upper limit for the pavilion and grape processing. The juice tank chillers could tolerate four hours. The control system was already on battery backup. The conclusion was that an interruption of up to a half hour was tolerable for the pavilion and processing and all other operations could tolerate 4 hours maximum.

Island Winery – Initial Thoughts

- Any solution should be "environmentally sensitive" although that was not defined. The specific thought was that "noisy diesel generators belching black smoke close to the pavilion would not be good."
- The project established an arbitrary budget of \$20,000 out-of-pocket expenses, exclusive of internal staff, and a target completion time of six weeks. Expected expenses included equipment to measure and monitor current loads and travel to visit sites with similar problems and implemented solutions. The owners offered that "it's worth \$20,000 to know if we have options."

Island Winery – Initial "Desirements"

- Electrical interruption limits
- A solution cost range
- > An intangible "environmentally sensitive" expectation
- A time limit
- Project cost.

The overall project objective, the "driver" for these desirements is simply to get a perspective on whether there are probable, feasible solutions (alternatives) to the reliability problem.

Island Winery – Electricity Rate Change

The operations manager also contacted the utility, got no encouragement with the reliability issue, but did learn that their rate structure was about to change dramatically. The old structure was based heavily on actual usage, with a power factor surcharge and load ratchet clause. The new structure was more complex:

- An availability charge estimated at \$7,500 per month
- A "load factor" charge, estimated to be \$3,500, based upon the highest usage rate for 15 minutes anytime in the previous 18 months
- > A power factor surcharge if the power factor dropped below 90%
- An actual kilowatt-hour usage charge.

SynGenics.

The utility was able to provide the most recent four years of usage data, in 15-minute increments.

Electrical Energy Summary

SynGenics

Summary of Electrical Energy Usage, Cost and Estimates									
Last year's total electrical energy usage	610,000 KWH								
Last year's total electrical energy bills	\$96,554								
Last year's peak demand	490 KVA								
Average off-season monthly usage (7 months)	24,500 KWH								
Average off-season peak load	70 KW								
Projected energy usage = no change	610,000 KWH								
Project year's total energy bill under the new rate structure	\$150,800								

Energy Usage

SynGenics D D D D

Description	Running Load (watts)	Starting Load (watts)	Total Load (watts)
Pavilion HVAC	86,000	110,000	110,000
Pavilion Lighting, Office and Miscellaneous	20,000	20,000	20,000
Pavilion Kitchen Including Water Heater	28,000	28,000	28,000
Total Pavilion	134,000	158,000	158,000
Processing Barn Crushers	96,000	116,000	116,000
Processing Barn Chillers	120,000	170,000	170,000
Processing Barn Lighting and Miscellaneous	40,000	40,000	40,000
Total Processing Barn	256,000	326,000	326,000
Maintenance Barn Lighting and Miscellaneous	30,000	30,000	30,000
Maintenance Barn Lift	5,000	7,500	7,500
Maintenance Barn Air Compressor	20,000	25,000	25,000
Total Maintenance Barn	55,000	62,500	62,500

Intermediate Technical Findings

SynGenics

- Based upon the total load, with rounding, the operations manager had talked to vendors and a 600 KW diesel generator, with control and switch gear would run around \$100,000 with another \$50,000 for freight, engineering, permits, and a fuel system.
 - That was below their initial \$500,000 threshold. The Maintenance Barn was almost a mile from the Processing Barn and Pavilion, which were in close proximity so visitors could tour both. There was a discussion about whether the Maintenance Barn needed to be included and the conclusion was to keep the total load aggregated, but when all the data was in they would decide whether to simply provide a separate solution for the Maintenance Barn, or move it closer to the other facilities.
 - > So the target was 600KW of on-site backup power.

Island Winery Desirements

Des #	Desirement Name	Priority	Meas Unit	Objective	Туре	Desirement Description
C1	Acquisition or First Cost	Med	\$	250,000	Cost	Total acquisition cost
C2	Annual Fully Amortized Cost	Med	\$	\$150,000	Cost	Operating costs including fuel, and maintenance
H1	Skill Level Required for Use	High	Scale: 3 to 7	3	HF	Skill level required for the user to make use of the system; based on company job descriptions
H2	Manhours Required to Operate Per 24 Hours	High	Manhours	1	HF	Amount of manning required to operate the system, measured as manhours per 24 hours of operation.
L1	Service Life	Med	Years	10	Other	Estimate of useful service life with regular maintenance, without overhaul, years
L2	Scalability, Modularity, Flexibility	Med	Scale: 1 to 3, 3 being easily scalable	3	Other	Flexibility and Modularity are expected, measure is KW increment of additional capacity. 25KW is 1

Island Winery Desirements - 2

Stateme Engine E

Des #	Desirement Name	Priority	Meas Unit	Objective	Туре	Desirement Description
S1	Initial Operational Capability	High	Years from now, this year = 0	0	Other	Fiscal year in which a system could be operational employing the technologies in the alternative.
E1	"Green-ness"	Low	Scale: 1 to 3	1	Other	Estimated perception, scale 1 to 3. 3 is fully renewable, 2 is better than existing, something renewable, 1 is existing grid or generator
P01	Nominal Power	High	KW	450	Perf	Continuous power which the system is capable of providing in KW.
P02	Surge Capacity	High	% of Nominal	35	Perf	Spike surge capacity, for 3 seconds
P03	Reliability	High	MTBF	10,000	Perf	Mean time to failure (MTBF), assuming appropriate service is performed, in hours.

Island Winery Alternatives

- Conventional Diesel Generator, Switchgear, Load Management, and Integration
- Multiple Diesel Generators (same total capacity as single generator), Switchgear, Load Management, and Integration
- Single Stage MicroTurbine w/ Conventional Generator, Switchgear, Load Management, and Integration
- Dual Stage MicroTurbine, Switchgear, Load Management, and Integration
- Solar Photovoltaics with Integration and Battery Bulk Storage, Switchgear, Load Management, and Integration
- Solar- Thermal Concentrator, Steam Generator with Working Fluid Storage, Switchgear, Load Management, and Integration
- Fuel Cell- Solid Oxide with Integration, Switchgear, Load Management, and Integration
- Wind Turbine with Integration and Bulk Storage, Switchgear, Load Management, and Integration

Island Winery	(C1) Acquisition or First Cost	(C2) Annual Fully Amortized Operating Cost	(E1) "Green- ness"	(H1) Skill Level Required for Use	(H2) Manhours Required to Operate Per 24 Hours	(L1) Service Life	(L2) Scalability, Modularity, Flexibility	(P01) Nominal Power	(P02) Surge Capacity-Spike	(P03) Reliability	(S1) Initial Operational Capability	Composite Desirability
Weight	1.0	1.0	1.0	1.0	1.0	3.0	3.0	5.0	1.0	3.0	2.0	
Multiple Diesel Generators	240000	220815	1	3	2	20	3	400	20	10000	0	0.973
Desirability	1.000	0.721	1.000	1.000	0.802	1.000	1.000	1.000	1.000	0.978	1.000	
Conventional Diesel Generator	75000	315448	1	3	2	20	3	400	20	10000	0	0.946
Desirability	1.000	0.396	1.000	1.000	0.802	1.000	1.000	1.000	1.000	0.978	1.000	
Dual Stage MicroTurbine	480000	159328	2	4	2	20	3	400	20	10000	1	0.812
Desirability	1.000	0.962	0.500	0.618	0.802	1.000	1.000	1.000	1.000	0.978	0.214	
Single Stage MicroTurbine w/ Conventional Generator	360000	252536	2	5	2	30	3	400	110	10000	1	0.771
Desirability	1.000	0.605	0.500	0.314	0.802	1.000	1.000	1.000	1.000	0.978	0.214	
Solar - Photovoltaics with Integration, Bulk Storage	1400000000	200610000	3	4	6	7	3	400	0	10000	12	0.000
Desirability	0.000	0.000	0.000	0.618	0.297	0.306	1.000	1.000	0.000	0.978	0.000	
Solar- Thermal Concen., Steam Generator	2200000000	110024400	3	5	24	30	1	400	20	10000	3	0.000
Desirability	0.000	0.000	0.000	0.314	0.000	1.000	0.153	1.000	1.000	0.978	0.000	
Fuel Cell - Solid Oxide with bulk storage and Al	2400000	311289	3	4	2	20	3	400	0	8000	1	0.000
Desirability	0.482	0.409	0.000	0.618	0.802	1.000	1.000	1.000	0.000	0.800	0.214	
Wind Turbine with Integration and Bulk Storage	1800000	102200	3	5	1	20	3	400	10	4000	2	0.000
Desirability	0.540	1.000	0.000	0.314	1.000	1.000	1.000	1.000	0.584	0.029	0.015	

											eT	EMS ENGINEER.
Island Winery	(C1) Acquisition or First Cost	(C2) Annual Fully Amortized Operating Cost	(E1) "Green-ness"	(H1) Skill Level Required for Use	(H2) Manhours Required to Operate Per 24 Hours	(L1) Service Life	(L2) Scalability, Modularity, Flexibility	(P01) Nominal Power	(P02) Surge Capacity-Spike	(P03) Reliability	(S1) Initial Operational Capability	Composite Desirability
Weight	1.0	1.0	1.0	1.0	1.0	3.0	3.0	5.0	1.0	3.0	2.0	
Multiple Diesel Generators	240000	220815	1	3	2	20	3	400	20	10000	0	0.973
Desirability	1.000	0.721	1.000	1.000	0.802	1.000	1.000	1.000	1.000	0.978	1.000	1
Conventional Diesel Generator	75000	315448				20	3	400	20	10000	0	0.946
Desirability	1.000	This is the es		,		1.00 T	his is th	ne <i>desir</i>	<i>ability</i> f	for the	1.000	
Dual Stage MicroTurbine	480000		case the estimated Acquisition Cost						ement	1	1	0.812
Desirability	1.000	for Multiple	Diesel C	enerator	S	1.00			l.		0214	
Single Stage Micro Turbine w/ Conventional Generator	360000	252536	252536 2 5 2 30 3 ⁴⁰⁰ This is the Co						mposito	0.771		
Desirability	1.000	0.605	0.500	0.314	0.802	1.000	1.000	1.000		Desirabil	1	
Solar - Photovoltaics with Integration, Bulk Storage	1400000000	200610000	3	4	6	7	3	400	0			0.000
Desirability	0.000	0.000	0.000	0.618	0.297	0.306	1.000	1.000	0.000	0.978	0.000	
Solar- Thermal Concen., Steam Generator	2200000000	110024400	3	5	24	30	1	400	20	10000	3	- ^{0.000}
Desirability	0.000	0.000	0.000	0.314	0.000	1.000	0.153	1.000	1.000	0.978	0.000	
Fuel Cell - Solid Oxide with bulk storage and Al	2400000	311289	3		2	R	3	400	0	8000	1	0.000
Desirability	0.482	0.409	0.000	0.619	0.000	1 000	1 000	1.000	0000	0.800	0.214	
Wind Turbine with Integration and Bulk Storage	1800000	As an exa it has zer desireme	o desirat	oility. If ε	n alternat	tive fails	to meet	any	,	4000	2	0.000
Desirability	0.540	table it is easy to quickly see where an					native fa	ils.	84	0.029	0.015	

	Payback	Affordability	Timeliness	Customer Focused	Compliance - legal, social, environmental	Internal Capacity to Manage	Downside Limited	Composite Strategic Desirability Score
WEIGHT	3	3	1	1	2	1	3	
Projects								
Electric Load Management	10	10	10	5	10	10	10	952
CO2 Harvesting Tank	5	10	10	10	10	10	10	862
Automated Bottle	5	10	10	10	10	10	10	002
Inspection	10	10	6	10	10	6	6	833
Electrical Power Project	7	10	10	10	6	10	6	772
New Harvester	10	5	10	3	6	10	10	735
Boat Dock and Bus	2	10	7	10	10	10	8	658
600 Acre Land Acquisition	4	10	10	5	10	10	4	643
Market Expansion West	4	10	10	10	5	4	6	625
200 acre expansion	10	4	10	8	6	4	4	579
Automated Casing Line	4	5	6	2	5	10	10	551
Champagne Warehouse	4	4	10	10	5	10	4	503
Market Expansion Europe	2	4	6	10	5	3	6	418

SynGenics, a a a a a

Draft Raw Data Sheet

	Active / Engaged End User	Known / Agreed Upon Requirements	Defined / Agreed Upon Demonstration Plan	Formal Analysis of Alternatives	Expected Value In Line With Costs	Represents the best approach among alternatives	Clear Air Force Strategic Value	Risks Managed	Formal Feasible Project Plan	Technology Transition Plan	Systems Issues Evaluated and Understood	Composite Score
WEIGHT	3	3	1	1	2	1	3	2	3	3	5	
PRODUCTS												
Product 1	5	2	5	4	3	2	2	6	8	3	2	321
Product 2	3	3	1	1	1	1	1	4	5	8	6	297
Product 3	2	1	3	1	3	1	1	5	10	4	5	279
Product n												

Summary

- The Business Case with Systems Engineering
 - Measurable, validated objectives (desirements) in a systems context
 - Alternatives that consider the system context for the application of the technology
 - A supportable assessment of the expected performance of the investment candidate against those objectives and an estimate of the consequences of failure. (evaluation of alternatives)
- The Streamlined Systems Engineering process is flexible and can be used for all three classes of business case:
 - It offers comparability at the level competing for resources
 - It offers a consistent framework for discussion and negotiation
 - It is a tool for building the business case; it does not "make" decisions; it empowers the decision maker
- > The process is efficient
 - Interested parties define the expectations
 - It offers consistency, traceability, and defensibility

ATD / HVP Example

SynGenics

See #15241 – Using the Streamlined Systems Engineering Method for S&T to Identify Programs with High Potential To Meet Air force Needs, Dr. Gerry Hasen, UTC, Track 4 – Early Systems Engineering, 2:40 PM, Wednesday, October 24, 2012