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Abstract 
This paper explores the potential benefits and disadvantages associated with providing a course 
(or part of a course) in complex systems as part of a systems engineering graduate degree 
program.  An overview of systems engineering education programs and a history of SE 
curricular design provides context for this exploration. Curriculums other than systems 
engineering that include courses in complexity, nonlinear dynamics, emergence, chaos, 
decentralized synchronization through stigmergy, scale-free networks and related topics are also 
examined.  The application of these concepts to design problems is assessed, particularly for 
engineers in the defense domain.  Complex systems learning objectives tailored for systems 
engineers are proposed.  Finally, a framework on which to base a trade-off analysis to determine 
if such topics should be included in an existing or developing graduate degree program is 
recommended. 
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Introduction & Background 
The need for SE education and training has long been an issue for defense acquisition, “The 
quantity and quality of systems engineering expertise is insufficient to meet the demands of the 
government and the defense industry” [NDIA, 2006].  Several studies that have examined this 
technical workforce problem from the perspective of human capital management in the 
shipbuilding industry [Todd & Parten, 2008], US Army acquisition [Clayton, et al., 2011], and 
NASA [Menrad & Larson, 2008] indicate that a holistic approach addressing all aspects of 
recruiting, developing, retaining and managing intellectual resources is necessary to provide SE 
education and training.  This paper examines the role of complexity theory as part of a graduate 
program in providing an integrated solution. An overview of existing systems engineering 
programs and curriculum structures provides a context for this study.    
There is little doubt that the design, development and deployment of complex systems have 
become a significant part of systems engineers’ tasking and will continue to be [Calvano & John, 
2004].  However, it is not really a new trend on its own.  Rather, it is recognition that all 
engineered systems, as part of larger socio-technical systems, exhibit behavior dominated by 
lateral influences [Calvano & John, 2004].  Indeed, in a 2006 study of the top systems 
engineering issue within DoD, the National Defense Industrial Association indicated that SE 
skills should support increasing complexity and that future issues would revolve around systems 
of systems and complexity [NDIA, 2006].  DoD’s own Systems Engineering Guide for Systems 
of Systems recommends applying “complexity theory to problems of large-scale, heterogeneous” 
systems [OUSD AT&L, 2008].  It defines emergence as a key property of systems of systems 
and encourages the use of models to understand complex behavior.  Some authors [Minai, et al, 
2010; Bar-Yam, 2010; Norman & Kuras, 2010] go so far as to argue that the traditional practices 
of systems engineering are of limited usefulness.  Only by applying the concepts of complexity 
itself will engineers be successful. 
It is assumed the reader is familiar with the definitions of complex systems and related topics, so 
a discussion reviewing those definitions, their origins and recent cross-disciplinary efforts is not 
warranted here.  Precise definitions and examples for the systems engineering community are 
provided by Sheard and Mostashari [2009], Sheard [2005], Minai, et al [2010] and Beckerman 
[2000].   A more rigorous and expansive discussion is presented by Maier and Fadel [2010]. 
 
Generic Systems Engineering Curricula 
A curriculum framework for SE was first described by Squires [2007] based on an analysis of 
over 200 courses related to systems engineering.  The framework includes 16 topic areas which 
are further grouped into one of four categories.  Further work which included more universities, 
some in Europe, which connected this framework with a set of systems engineering 
competencies, resulted in a proposed reference curriculum [Jain, et al, 2007].  Using Quality 
Function Deployment (QFD) -inspired techniques, a correlation was established between course 
topics and industry-required competencies.  The result was a set of recommendations and a two-
dimensional framework for graduate-level courses which is repeated as Figure 1 [Jain, et al, 
2007]. 
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Figure 1. Proposed Reference Framework for a Systems Engineering Curriculum [Jain, et al, 
2007] 

The final evolution of the framework included extensions based on ISO/IEC 15288 [ISO/IEC, 
2008] and INCOSE’s Systems Engineering Handbook v3.2 [INCOSE, 2010].  Table 1 outlines 
the new framework [Squires & Cloutier, 2010]. 
Table 1. SE Curriculum Framework Course Categories and Types [Squires & Cloutier, 2010] 

Level Category Course Type 

0 
Pre-requisite Courses 

Probability & Statistics 

0 Linear, Matrix, Differential Equations 

1 

Fundamentals: Generic or Domain Specific 

Fundamentals of Systems Engineering 

1 Fundamentals of Software Systems Engineering 

1 Introduction to Systems Engineering Management 

1 Introduction to Domain Specific 

2 

System Life Cycle Technical Processes 

Mission Needs, Systems Concept, System Requirements, 
Requirements Analysis 

2 Systems Architecture, Systems Design and Development 

2 Modeling, Simulation and Optimization 

2 System Integration and Test, Field Testing 

2 Manufacturing, Production, Operations, Retirement 

2 Systems Suitability: Quality, Safety, Reliability, Supportability 

3 

System Life Cycle Project Processes 

Decisions, Risks and Uncertainty 

3 Configuration Management, Information Management 

3 Project Management, Finance, Economics, Accounting 

4 
Other System Life Cycle Processes 

Enterprise Systems 

4 Acquisition and Supply 

4 
Other Broad Areas Applicable to Systems 

Engineering 

Systems Thinking 

4 Creativity and Problem Solving 

4 Subject Matter Expert Domain Specific 

5 Capstone Masters Thesis, Project or Seminar 
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The development of a more complete framework that encompasses systems engineering 
education is currently being pursued by collaborating researchers within the Systems 
Engineering Research Center (SERC), formed under a DoD University Affiliated Research 
Consortium (UARC) and led by the Stevens Institute of Technology, as a Body of Knowledge 
and Curriculum to Advance Systems Engineering (BKCASE) and a Graduate Reference 
Curriculum for Systems Engineering (GRCSE - pronounced "Gracie").  This is supported by the 
professional societies of the International Council on Systems Engineering (INCOSE) and the 
Institute of Electrical, and Electronic Engineers (IEEE) through their Systems Council, as well as 
the National Defense Industries Association (NDIA) Systems Engineering Division [BKCASE, 
2009; Squires, et al, 2011; Ferris, et al, 2010; Chittister and Haimes, 2011]. 
 
Guidance that informs SE Education Development 
OSD, in conjunction with DAU, INCOSE, NDIA, several academic institutions, and Federally 
Funded Research and Development Centers (FFRDC) defined a series of systems engineering 
competencies, and a subset of these competencies for the Systems Planning, Research, 
Development and Engineering (SPRDE) career field. The SPRDE model is defined through 29 
competencies with 45 elements. An excerpt showing the first ten elements is provided in Table 2. 
 
Table 2. SPRDE-SE/PSE Systems Engineering Competency Model. 

Competency 
# 

Name Element 
# 

Definition 

1 Technical Basis 
for Cost 

Element 1 Provide technical basis for comprehensive cost estimates 
and program budgets that reflect program phase 
requirements and best practices using knowledge of cost 
drivers, risk factors, and historical documentation (e.g. 
hardware, operational software, lab/support software). 

2 Modeling and 
Simulation 

Element 2 Develop, use, and/or interpret modeling or simulation in 
support of systems acquisition. 

3 Safety Assurance Element 3 Review Safety Assurance artifacts to determine if the 
necessary SE design goals and requirements were met 
for: Safe For Intended Use (SFIU), warfighter survivability, 
user safety, software safety, environmental safety, 
Programmatic Environmental, Safety and Health 
Evaluations (PESHE), and/or Critical Safety applications. 

4 Stakeholder 
Requirements 
Definition 

Element 4 Work with the user to establish and refine operational 
needs, attributes, performance parameters, and 
constraints that flow from the stakeholder described 
capabilities, and ensure all relevant requirements and 
design considerations are addressed. 

5 Requirements 
Analysis 

Element 5 Ensure the requirements derived from the stakeholder-
designated capabilities are analyzed, decomposed, 
functionally detailed across the entire system, feasible and 
effective. 

6 Architecture 
Design 

Element 6 Translate requirements into alternative design solutions.  
The alternative design solutions include hardware, 
software, and human elements; their enabling processes; 
and related internal and external interfaces. 
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6 Architecture 
Design 

Element 7 Track and manage design considerations (boundaries, 
interfaces, standards, available production process 
capabilities, performance and behavior characteristics) to 
ensure they are properly addressed in the technical 
baselines. 

6 Architecture 
Design 

Element 8 Generate a final physical architecture based on reviews of 
alternative designs. 

6 Architecture 
Design 

Element 9 Conduct walkthroughs with stakeholders to ensure that 
requirements will be met and will deliver planned systems 
outcomes under all combinations of design usage 
environments throughout the operational life of a system. 

7 Implementation Element 10 Manage the design requirements and plan for corrective 
action for any discovered hardware, software, and human 
deficiencies 

 
ABET accredits academic programs in engineering, including systems engineering. Two 
institutions currently have Masters of Science in Systems Engineering (MSSE) programs 
accredited by ABET: NPS and the Air Force Institute of Technology (AFIT).  The ABET 
EC2010 Criterion 3 on “Program Outcomes and Assessment” lists the common aspects that 
engineering programs must demonstrate for their graduates, frequently referred to as the ABET 
(a) – (k) criteria, Table 3. 
 
Table 3. ABET EC2010 Criterion 3. 

(a) an ability to apply knowledge of mathematics, science, and 
engineering 

(b) an ability to design and conduct experiments, as well as to analyze and 
interpret data 

(c) an ability to design a system, component, or process to meet desired 
needs within realistic constraints, such as economic, environmental, 
social, political, ethical, health and safety, manufacturability, and 
sustainability 

(d) an ability to function on multidisciplinary teams 
(e) an ability to identify, formulate, and solve engineering problems 
(f)  an understanding of professional and ethical responsibility 
(g) an ability to communicate effectively 
(h) the broad education necessary to understand the impact of engineering 

solutions in a global, economic, societal and environmental context 
(i)  a recognition of the need for, and an ability to engage in, life-long 

learning 
(j)  a knowledge of contemporary issues 
(k) an ability to use the techniques, skills, and modern engineering tools 

necessary for engineering practice 
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These outcomes must be addressed within systems engineering programs in order to achieve and 
maintain ABET accreditation. They provide useful high-level outcomes for systems engineering 
education. The NPS SE programs address these outcomes via a decomposed structure of learning 
objectives, which form the basis for instruction and assessment of student mastery of these 
aspects. 
The Conceive-Design-Implement-Operate (CDIO) Initiative has developed a syllabus to use as a 
context for engineering education, Table 4 [Crawley et al, 2011]. 
 
Table 4. CDIO Syllabus v2.0 at Second Level of Detail 

 

1       DISCIPLINARY KNOWLEDGE AND REASONING  

1.1    KNOWLEDGE OF UNDERLYING MATHEMATICS AND 
SCIENCE 

1.2    CORE FUNDAMENTAL KNOWLEDGE OF ENGINEERING 

1.3    ADVANCED ENGINEERING FUNDAMENTAL 
KNOWLEDGE, METHODS AND TOOLS 

 

2       PERSONAL AND PROFESSIONAL SKILLS 
AND ATTRIBUTES 

2.1    ANALYTICAL REASONING AND PROBLEM SOLVING 

2.2    EXPERIMENTATION, INVESTIGATION AND 
KNOWLEDGE DISCOVERY 

2.3    SYSTEM THINKING 

2.4    ATTITUDES, THOUGHT AND LEARNING 

2.5    ETHICS, EQUITY AND OTHER RESPONSIBILITIES 

 

 

3      INTERPERSONAL SKILLS: TEAMWORK AND 
COMMUNICATION 

3.1   TEAMWORK 

3.2   COMMUNICATIONS 

3.3   COMMUNICATIONS IN FOREIGN LANGUAGES 
 
4       CONCEIVING, DESIGNING, IMPLEMENTING, AND 

OPERATING SYSTEMS IN THE ENTERPRISE, 
SOCIETAL AND ENVIRONMENTAL CONTEXT 

4.1    EXTERNAL, SOCIETAL AND ENVIRONMENTAL 
CONTEXT 

4.2    ENTERPRISE AND BUSINESS CONTEXT 

4.3    CONCEIVING, SYSTEMS ENGINEERING AND 
MANAGEMENT 

4.4    DESIGNING 

4.5    IMPLEMENTING 

4.6    OPERATING 

 

 
This syllabus extends what is present in ABET outcomes by informing engineering educators of 
the engineering contextual elements that should be addressed in an engineering curriculum 
otherwise not explicitly addressed. Whereas ABET focuses on organization to ensure that 
engineering programs have a structure in place to constantly maintain, monitor, and improve 
their educational outcomes and objectives, the CDIO syllabus provides a detailed list for the 
context of what should be in an engineering education program. A major philosophy of the 
CDIO initiative is to motivate universities to address the professional and personal skills: in 
addition to disciplinary and engineering knowledge, there is an emphasis on having students 
learn to be engineers, and not simply learn engineering science.   
 
Complex Systems (and Related) Education in non-SE Programs 
There are several undergraduate and graduate degree programs labeled as Complex Systems 
available in North America.  These are mostly associated with computer science and networking 
(like the one at Indiana University [2012]) or associated with biologic sciences (like the one at 
Florida Atlantic University [2012]).  Additionally, there are several certificate programs, like 
those at the University of Michigan [2012] which is aimed at students “in the physical, biological 
and social sciences” and at Duke University [2012].  Most claim to be interdisciplinary, and do 
include courses in physics, math and computer science.  However, the “genealogy” of these 
programs and their host departments or centers within their respective larger universities seems 
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apparent from their required courses.  That is, one can tell the Indiana University program is 
managed by their computer science department because many courses cover “informatics” and 
“biologically inspired computing” [Indiana University, 2012].  The author could find no degree 
programs in complex systems engineering or in design of complex systems. 
Courses in complex systems are offered at virtually every major university in the United States.  
They are mostly offered as part of degree programs in applied math, computer science, physics 
and economics.  Rather than present an exhaustive list of courses and their content, a brief 
sampling is provided to describe the material currently being taught.  Typical courses are named 
“Phys 580 Empirical Analysis of Nonlinear Systems,” “Math 550: Introduction to Dynamical 
Systems” [University of Michigan, 2012], “INFO I690 Mathematical Methods for Complex 
Systems,” “INFO I585 Biologically Inspired Computing” [Indiana University, 2012] and “MAP 
6211 Introduction to Dynamical Systems and Chaos” [Florida Atlantic University 2012].  
Typical topics include “fractals, emergent behavior, chaos theory, cooperative phenomena, and 
complex networks” at Indiana University [2012] and “one-, two- and higher dimensional flows, 
oscillator theory, maps, attractors, bifurcations, chaos” at Florida Atlantic [2012].  One syllabus 
offered a broad yet tangible set of learning objectives: 

• Understand the theoretical foundations of complexity: mathematical, 
computational and information-theoretic; 

• Reason about complexity with fluency and using scientific 
terminology; appreciate it as a post-Newtonian paradigm for 
approaching a large body of phenomena; 

• Apply the terminology and methodology of nonlinear dynamics and 
chaos to study the time-evolution of complex systems; 

• Describe some of the well-known models of complex systems, such 
as artificial life and Self-Organised Criticality (SOC); 

• Construct new variations on models for complex systems using the 
modelling techniques taught in this course; 

• Implement these models elegantly and efficiently using Java or 
MATLAB; 

• Appreciate the interdisciplinary nature of complexity and the pivotal 
role that computer scientists play in its study. [Adalat, 2012] 

 
Some economists seem to have been the first to suggest application of nonlinear dynamics to 
complex system design outside the physical sciences [Richardson, 2011].  The concept of a 
system’s behavior being modeled by a set of interdependent differential equations in state-space 
form has been second nature to physicists, mathematician and engineers. The breakthrough for 
economists was Jay Forrester [1968] representing the equations graphically as stocks and flows 
[Richardson, 2011] rather than as state variables and rates of change.  Forrester [1998; 1968] 
recommends educating “enterprise designers” who would use quantitative approaches to describe 
endogenous system feedback and computer modeling of nonlinear system dynamics.  He 
recognized the key to correct design is not integration of a plant with a separate control system, 
but determination of system parameters that result in acceptable fluctuations around a desired 
equilibrium point (or fixed point, to use applied mathematics terminology).  Thus, a corporation 
could be designed to be less vulnerable to outside influences and be more stable [Forrester, 
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1998].  This approach to design, in which optimality is traded-off in favor of robustness-by-
structure, is a key principle in engineering complex systems [Minai, et al, 2010]. 
 
Potential Applications of Complexity Theory to System Design 
Complexity lies between perfect chaos and perfect order [Miller & Page, 2007].  Systems can be 
considered complex because they exhibit attributes that we would say is neither completely 
chaotic nor completely orderly.  Problems arise in this no-man’s-land.  This goes beyond 
considering stochastic processes (or noise) during design, which can be estimated and ‘designed 
around.’ Rather, the focus is on the appearance of near-periodic behavior and extreme sensitivity 
to initial conditions.  It is less about including control subsystems and more about designing in 
parameters that will lead to the desired performance of the system.  However, as intimated 
above, there is little information available on how complexity theory and principles have been 
successfully applied to real problems which have resulted in operational systems.  The only 
exception is the development of models used to predict and analyze existing systems which 
include ecosystem preservation, pandemic prediction, and population growth and migration.  
Some have been so bold as to examine global warming and state-sponsored terrorism 
[Richardson, 2011].  Those computer-based models have obvious utility in providing insight for 
understanding and even predicting behavior.  But, the problem remains: what to do about those 
actual systems that are being modeled?  The actual implementation of systems including 
hardware, software, people-ware based predominantly on complexity theory lags.  Nevertheless, 
many possible uses present themselves.  A complete list of every effort in this area would fill 
volumes.  Instead, the author just describes a few to illustrate the breadth of applications. 
Nonlinear dynamics applies to the analysis of virtually every system which can be modeled as a 
set of interconnected, nonlinear or time-variant equations.  That is virtually every system known, 
artificial and natural.  Whenever we can describe or model a system in terms of nonlinear 
differential equations (or difference equations in discrete-time), then these concepts can be 
brought to bear in design.  Most engineering courses provide tools to explicitly remove 
nonlinearities.  These include manipulating equations in state-space models, producing a linear 
approximation by expanding a series around an operating point or by simply assuming it away.  
While this is acceptable in many instances, it simply is not generally applicable.  Instead, 
engineers should embrace nonlinearities.  The techniques explored by Strogratz, Wiener, 
Belousov & Zhabotinsky, and Kuramoto (just to name a few) are not too mathematically 
daunting.  If one can use one of the built-in ordinary differential equation solvers in MATLAB or 
write a simple Euler integration or second-order Runge-Kutta routine in Excel, one can use those 
to explore nonlinear systems.  However, traditional approaches for time- and frequency-based 
analysis can break down.  Instead, use of state-space representation is preferred to identify fixed 
points and to consider basins of attraction. (As an aside, armed with nothing more than a copy of 
Strogatz [1994] and built-in help menus, the author created a MATLAB simulation that animated 
the famous Lorenz attractor in less than 15 minutes.)  Of course, the same caveats that apply to 
all models regarding garbage-in and garbage-out also apply here.  And, that’s the trick – to 
discover the correct aspects to include in a model and to replicate them with appropriate fidelity.  
However, with education in complexity theory, it becomes a manageable trick rather than being 
just beyond the reach of traditional techniques.  One recent example with an immediate defense 
application was described by Behdad, Al-Joumayly and Li [2011].  In their work, a pair of 
loosely-coupled nonlinear circuits was designed to enhance the time difference of arrival of RF 
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waves between two antennas in an electrically small array in support of direction-finding.  A set 
of nonlinear equations were simulated via computer model and used to explore the system 
behavior and optimize design parameters for a 300MHz signal and an array of only 5cm.  
Several prototypes were built and tested.  Measured results agreed relatively well with the 
theoretically predicted ones.  More importantly, the output phase differences of the new arrays 
were enhanced and their sensitivity patterns were more directional compared to the non-coupled 
counterpart.  Having a small form-factor is self-evidently important for applications in which 
small physical size or low power consumption are architecturally relevant, so designing such an 
array that retains high direction-of-arrival (DOA) sensitivity is beneficial.  This is but one simple 
example.  Other successful applications have come in the fields of mechanical vibrations, lasers, 
superconducting circuits, chemical oscillators, genetic control systems, and communications 
[Strogatz, 1994].   
Emergence and decentralized systems concepts may be applied to the design and evaluation of 
cooperative autonomous systems.  Autonomous system swarm designers are drawn to the study 
of systems that can organize without an organizer and can coordinate without a coordinator.  
Research in this area is so prolific that it has practically become its own discipline.  Agent-based 
modeling with both homogenous and inhomogeneous populations and the use of probabilistic 
finite-state automata interacting with each other through stigmergy are the leading tools in this 
realm.  To bring some more traditional mathematical models, we could consider our agents as 
really fulfilling Markov properties – their future state is based only on their current state (not 
what came before) and some triggering event (transition) along with the probability of 
transitioning to another state having sensed the event.  Then, if we say the number of agents in 
each state is a variable, it should be possible to write a set of differential equations (or difference 
equations for discrete-time models) in which the rate of change for each variable is a function of 
the number of agents in each state and the likelihood of an event.  This methodology has been 
shown to agree well with experimental data [Winfield, et al, 2009].  However, that only gets us 
part-way there.  The problem is that finding a clean relationship between swarm population-
description (in terms of number of agents in each state) and its purposeful action is difficult or 
impossible.  If we can define purposeful action directly in terms of the number of agents in a 
given state(s) or define a new ‘state’ to capture the number of agents individually engaged in 
some desired activity, then we at least have an approach to design: to simulate such a model and 
explore the impact of state-transition triggers and probabilities.  However, this methodology is 
not generally applicable.  It seems more promising if the agents are somewhat more intelligent.  
If they are able to make some computations and predictions and then communicate with a richer 
set of information, they can find a ‘good enough’ localized behavior more quickly than a 
globally-computed optimum solution [Palmer, et al, 2003]. 
The assertions that swarms are more reliable and more robust than their traditional, centralized 
counterparts have gone mostly unchallenged.  Only a few researchers have sought to quantify 
this robustness [Bjerknes & Winfield, 2010].  In turns out that swarms are not a panacea.  That 
is, they suffer from the same issues that plague centralized systems – they can fail, and 
sometimes in unanticipated failure modes.  Further, the simplification that all agents are identical 
(or vary according to some probability function regarding their propensities to react to stimuli) 
may not be completely satisfactory.  Rather, a mix of diverse types of agents is expected to 
demonstrate improved performance in tasks relying on both exploration and exploitation [Page, 
2010]. 
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Small world networks exhibit properties that can be applied in network design and analysis.  This 
is not just computer-communication networking, but is more generally applicable to populations 
in which individuals are represented as nodes and their connections with each other are links.  
Thus, we can have a business network, a family support network or a terrorist network.  Small-
world networks are characterized by a non-uniform distribution of links between nodes.  Most 
nodes are just connected to the nodes in their immediate neighborhood while a few are connected 
to far nodes.  (Here, the concepts of near and far are based on the number of nodes in between, 
not on geographic distance.)  The short-distance nodes rely on adjacent long-distance nodes to 
bypass many node-to-node-to-node interchanges.  Having just a few long-distance connections 
dramatically reduces a network’s average path length.  That means the network can enjoy the 
speed of information transfer while incurring a relatively small cost of maintaining only a few 
long-distance links.  Scale-free networks can be described as a special case of small-world 
networks.  In scale-free, or scale-law, networks, a very few nodes have many links while many 
nodes have few links and there is a large variety of different numbers of links.  It is self-similar 
and follows a power-law distribution.  This kind of network is very robust.  Many of the low-link 
nodes can fail without significantly impacting the performance of the rest of the network.  
However, if only one of the many-link nodes (or hubs) fails, network performance degrades.  
The implications for distributed systems are profound.  Communication systems, power grids, 
disease control and corporate strategies have all benefited from modeling and analysis based on 
small-world network concepts [Mitchell, 2011].  However, it is not a panacea for improving 
distributed system design or exploiting weaknesses in an enemy’s network (such as disrupting 
terrorist cells or engaging a near-peer competitor in command and control warfare).  A system’s 
behavior is not completely described by its network properties.  Even if it were, the models of 
networked systems should be viewed with some skepticism until properly validated. 
Discovery of real problems, ideation of alternative solutions and comparative assessment of 
these alternatives are all in the realm of traditional systems engineering.  This can also be said 
about issues regarding life-cycle balance like reliability, maintainability, supportability and total 
ownership cost.  So, the argument might be made that it is not systems engineers who would 
benefit most from formal education in complexity; but it is physicists, economist and domain-
engineers that would benefit from a formal education in systems engineering.  Forrester [1998] 
himself emphasizes that corporate policy, government laws and regulations and even business 
mergers “constitute major redesign of the world economy” when viewed as a system.  “The 
shortcomings of those systems result from defective design, just as the shortcomings of a power 
plant result from erroneous design” [Forrester, 1998].  It seems if practitioners in the fields of 
complexity applied the most fundamental principles of systems engineering (define the problem, 
identify functions of a system solution to resolve the problem, compare alternative designs, and 
recommend a solution based on its quantitative impact on the problem versus its life-cycle cost), 
applications would be more forthcoming. 
 
Recommended Learning Objectives for Systems Engineering Students 
Learning objectives should explicitly define the knowledge and skills a learner can demonstrate 
upon completion of a course.  They should be precise, measureable and verifiable.  Being able to 
apply principles and theory of complexity in the above-listed applications requires more than the 
skill set defined by the traditional competencies and program outcomes of systems engineering 
education programs which are based on a deconstructionist approach.  Articulating such a skill 
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set in terms of course learning objectives follows directly from what one would expect of a 
student intending to design complex systems.  For this paper, the author has attempted to sort 
them by affinity. 
Nonlinear dynamics 

• Define nonlinear systems and differentiate them from linear systems 
• Create 1-, 2-, and 3-dimension phase portraits 
• Determine fixed points of sets of nonlinear systems; characterize them in terms of their 

stability and apply Jacobian matrices to quantify their behavior; map basins of attraction 
and eigenvectors 

• Use phase portraits to characterize limit cycles 
• Create computer models of nonlinear systems based on sets of nonlinear equations 
• Use computer models of nonlinear equations to explore the effects of changing system 

parameters and initial conditions 
Complex Adaptive Systems and Decentralized Systems 

• Create models of probabilistic finite state automata 
• Given a description of individual agent behavior, draw a state-transition diagram 

including states and triggers 
• Describe how adaptive agents impact a system’s macroscopic behavior 
• Define the terms ‘robustness’ and ‘stability’ in the context of complex systems 
• Characterize a system based on its diversity (across types and within types) 
• Describe the strengths and weaknesses of decentralized systems compared to centralized 

control; determine in which situations one would be better than the other 
Small world networks 

• Define the terms ‘node,’ ‘link,’ ‘hub’ (or ‘high-degree node’), ‘clustering,’ ‘small world 
network’ and ‘scale-free network’ 

• Determine average path length, clustering coefficient, and degree distribution of a given 
network 

• Describe how network resilience is related to average path length and clustering 
• Model the impact of node failure in different kinds of network configurations 

Applied Complex Systems Design (some adapted from Sheard [2009]) 
• Apply complexity theory to ‘evolve’ rather than to ‘design’ a system; describe the impact 

of environmental forces and mutation 
• Describe the impact of self-modifying components 
• Leverage emergence by designing in parameters that lead to stable desired outcomes even 

in changing environments 
• Apply diversity by employing different types of elements (homogeneity is efficient, but 

not robust); explore trade-offs in diversity within types and across types 
• Identify elements that work on different time-scales in different layers 
• Apply the concept of “satisficing” for second-priority components 
• Consider network effects, especially human-centric networks; model changes and 

alternative designs to quantify robustness and identify vulnerable nodes 
• Describe how design and development organizations are themselves complex systems. 
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A Framework for Assessing Benefits and Costs of Complexity Education 
Adding a formal course in complexity for systems engineers may not be the best approach for all 
programs.  There should be some means to explicitly consider its benefits as well as its costs.  
Many programs are already overloaded.  Considering the number of skills and desired outcomes 
of traditional systems engineering described in the opening sections of this paper, a 2-year 
program can barely cover it all.  So, the greatest cost is in what topics or courses or program 
outcomes we would be willing to give up in exchange for complexity topics. 
Benefits should be judged based on the intended fields and applications of graduating students.  
Grouping these fields cleanly into non-overlapping sets of “traditional” and “complex” 
engineering is no easy task.  In fact, the concept of a spectrum from complete order through 
complexity to chaos is useful [Beckerman, 2000; Sheard, 2009]. At one end, the systems of 
interest exhibit inter-element interaction dominated by hierarchical relationships, linear and time-
invariant relationships, managed boundaries and obvious direct connections between cause and 
effect.  At the other, behavior is almost completely stochastic and individual elements are not of 
interest, but statistical approaches can “average out” individual actions so a designer can focus 
solely on macroscopic properties [Beckerman, 2009; Miller & Page, 2007].  In between the ends 
are systems that are characterized by many diverse elements interacting strongly with each other 
in nonlinear ways, intra-system interactions that do not follow any system hierarchy and can 
change over time, apparent disconnect between cause and effect, unknown or unmanageable 
boundary conditions, and an operational environment that is not static.  This is the realm of 
complexity. 
Working in the middle ground, knowledge of complexity principles and mastery of the learning 
objectives outlined in the previous section would serve a systems engineer well.  At either ends 
of this spectrum, formal education in complexity would be of limited value.  The traditional 
reductionist approaches apply and are well-known.  Now, that is not to say that design and 
development of such complicated systems are easy.  It is just a means to characterize the 
problem and solution spaces in terms of complexity theory in order to assess the expected 
success of a systems engineer faced with different challenges.  In the middle of our spectrum, the 
systems engineer would rely on his education to apply nonlinearity, emergence and decentralized 
self-organization, multi-scale influences, and diversity.  Real success may only be achieved via 
recognition that complex systems are never really completed, but evolve continuously.  They are 
self-integrating and operated over ambiguous boundaries.  Thus, a designer’s task is to identify 
those most critical, selective pressures and provide for individual components to interact in such 
a way that their relationships themselves can change in response.  In a domain of self-organizing 
and evolving systems, the designer should focus on establishing and nurturing a development 
environment to address overall coherence rather than complete control over all design variables.  
However, even in complex domains, many system components exhibit traits that are fit for 
traditional systems engineering.  Thus, complex systems engineering should complement and not 
replace traditional approaches. 
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