

Robert E. Smith, CSP, Booz Allen Hamilton

NDIA Systems Engineering Conference

San Diego, CA

October 24, 2012

14794
MIL-STD-882E:
Software System Safety Process in 882E

Agenda

Purpose

Software Safety Section Origination

Software Safety-related Definitions

Software Control Categories

Software Contribution to Risk

Software Hazard Causal Factor Risk

Assessment Criteria

Conclusion

1

Purpose

To provide an overview of the Software System Safety (SwSS) process as

specified in MIL-STD-882E:

Section 4.4 – Software Contribution to System Risk (part of the mandatory

system safety process)

Appendix B – Software System Safety Engineering and Analysis

2

Software Safety Section Origination

The 882E software safety section is based on established software safety

standard practice

– DoD Joint Software Systems Safety Engineering Handbook (JSSSEH) Version
1.0 Published August 27, 2010

– Allied Ordnance Publication (AOP)-52 (EDITION 1) – Guidance On Software
Safety Design and Assessment of Munitions-Related Computing Systems dated 9
December 2008

The existing Joint Software System Safety IPT provided Subject Matter

Expertise for the 882 effort

3

General Software Safety Steps

Step 1 – Start with an identified hazard and system risk assessment

Step 2 – Perform Software Assessment to determine degree of software

control for the identified hazard (Software Control Category (SCC))

Step 3 – Using the SCC and the severity category for the identified system

hazard, determine Software Criticality Index (SwCI) and Level of Rigor

(LOR) required to evaluate impact of software on the system risk

Step 4 – Review LOR tasks execution

– Step 4a - If LOR tasks not completed, assign risk level to hazard based on Table
VI

– Step 4b – If LOR tasks are completed successfully, use results to reassess
system risk of identified hazard

4

Step 2 - Software Control Categories (SCC)

Same definitions as used in the JSSSEH

TABLE IV. SOFTWARE CONTROL CATEGORIES

Level Name Description

1
Autonomous

(AT)

 Software functionality that exercises autonomous control authority over potentially safety-significant

hardware systems, subsystems, or components without the possibility of predetermined safe detection

and intervention by a control entity to preclude the occurrence of a mishap or hazard.

(This definition includes complex system/software functionality with multiple subsystems, interacting

parallel processors, multiple interfaces, and safety-critical functions that are time critical.)

2
Semi-

Autonomous (SAT)

 Software functionality that exercises control authority over potentially safety-significant hardware

systems, subsystems, or components, allowing time for predetermined safe detection and intervention

by independent safety mechanisms to mitigate or control the mishap or hazard.

(This definition includes the control of moderately complex system/software functionality, no parallel

processing, or few interfaces, but other safety systems/mechanisms can partially mitigate. System

and software fault detection and annunciation notifies the control entity of the need for required safety

actions.)

 Software item that displays safety-significant information requiring immediate operator entity to execute

a predetermined action for mitigation or control over a mishap or hazard. Software exception, failure,

fault, or delay will allow, or fail to prevent, mishap occurrence.

(This definition assumes that the safety-critical display information may be time-critical, but the time

available does not exceed the time required for adequate control entity response and hazard control.)

5

Step 2 - SCC (cont)

Same definitions as used in the JSSSEH

3
Redundant

Fault Tolerant (RFT)

 Software functionality that issues commands over safety-significant hardware systems, subsystems, or

components requiring a control entity to complete the command function. The system detection and

functional reaction includes redundant, independent fault tolerant mechanisms for each defined hazardous

condition.

(This definition assumes that there is adequate fault detection, annunciation, tolerance, and system

recovery to prevent the hazard occurrence if software fails, malfunctions, or degrades. There are

redundant sources of safety-significant information, and mitigating functionality can respond within any

time-critical period.)

 Software that generates information of a safety-critical nature used to make critical decisions. The system

includes several redundant, independent fault tolerant mechanisms for each hazardous condition, detection

and display.

4 Influential
 Software generates information of a safety-related nature used to make decisions by the operator, but does

not require operator action to avoid a mishap.

5

No Safety

Impact

(NSI)

 Software functionality that does not possess command or control authority over safety-significant hardware

systems, subsystems, or components and does not provide safety-significant information. Software does

not provide safety-significant or time sensitive data or information that requires control entity interaction.

Software does not transport or resolve communication of safety-significant or time sensitive data.

6

Step 3 - Software Safety Criticality Matrix (SSCM)

7

Step 4 - Relationship Between SwCI and Risk

Characterizes the System Safety responsibilities to the PM for software system safety.

Life-cycle independent
8

Conclusion

MIL-STD-882E makes Software System Safety Engineering and Analysis a

clear requirement

Follows the published and recognized guidelines utilized by government

and industry for Software System Safety

Documents a system safety risk assessment compliant approach for

software contributions to system risks

MIL-STD-882E Requires Software System Safety Analyses

9

Questions?

Robert E. Smith, CSP

Booz Allen Hamilton

1550 Crystal Drive, Suite 1100

Arlington, VA 22202-4158

703-412-7661

smith_bob@bah.com

10

Backups

11

Section 3.2 Definitions

• 3.2 Definitions are mandatory.

• Key SwSS definitions in -882E

• 3.2.37 Software. A combination of associated computer instructions and computer data that
enable a computer to perform computational or control functions. Software includes computer
programs, procedures, rules, and any associated documentation pertaining to the operation
of a computer system. Software includes new development, complex programmable logic
devices (firmware), NDI, COTS, GOTS, re-used, GFE, and Government-developed software
used in the system.

• 3.2.10 Firmware. The combination of a hardware device and computer instructions or
computer data that reside as read-only software on the hardware device. The software
cannot be readily modified under program control.

• 3.2.18 Level of rigor (LOR). A specification of the depth and breadth of software analysis and
verification activities necessary to provide a sufficient level of confidence that a safety-critical
or safety-related software function will perform as required.

• 3.2.24 Non-developmental item (NDI). Items (hardware, software, communications/ networks,
etc.) that are used in the system development program, but are not developed as part of the
program. NDIs include, but are not limited to, COTS, GOTS, GFE, re-use items, or previously
developed items provided to the program “as is”.

• 3.2.35 Safety-significant. A term applied to a condition, event, operation, process, or item that
is identified as either safety-critical or safety-related.

• 3.2.32 Safety-critical function (SCF). A function whose failure to operate or incorrect
operation will directly result in a mishap of either Catastrophic or Critical severity.

• 3.2.34 Safety-related. A term applied to a condition, event, operation, process, or item whose
mishap severity consequence is either Marginal or Negligible.

15

SCC (cont)

• All SCC should be re-evaluated if legacy software functions are included in system-of-systems (SoS) environment.

• The legacy functions should be evaluated at both the functional and physical interfaces for potential influence or participation in top-
level SoS mishap and hazard causal factors.

Re-evaluate software for legacy implication in SoS

16

Software Contribution to Risk

• For software, the SwCI and LOR define the requirements of mitigation efforts.

• MIL-STD-882E, Appendix B provides guidance on evaluating software’s contribution to system risk and additional guidance on
software safety engineering and analysis activities.

• The successful execution of pre-defined LOR tasks increases the confidence that the software will perform as specified to software
performance requirements, while reducing the number of contributors to hazards that may exist in the system.

• If the software design does not provide sufficient evidence that it meets safety requirements, then an assessment shall be made to
determine the risk associated with inadequately verified software hazard causes and controls.

17

Assessing Software’s Contribution to Risk

18

Table B-I. Software Hazard Causal Factor Risk
Assessment Criteria

This is the table that should be used to assess Software contribution to risk

19

