NDIA Systems Engineering Conference – Gabriel Lopez

Model-based approach for trade studies involving COTS integration

Gabriel Lopez

NDIA 15th Annual Systems Engineering Conference

Oct 22-25, 2012

San Diego, CA

Agenda

- □ Topic motivation and focus
- Model description and framework
- Potential applications and examples
- □ Problems and challenges
- □ Conclusion

About the Author

Education

- BSEE

 University of Maryland, College Park, MD
- MSEE Johns Hopkins University, Baltimore MD
- MSTM-SE Johns Hopkins University, Baltimore MD
- Currently pursuing a Ph.D. in Systems Engineering George Washington University

□ Work experience

- Silicon carbide device research ARL, Adelphi, MD
- Various positions and rotations in defense industry
- Systems Supportability/ Reliability Engineering since 2006

□ Research interests

- Systems engineering and systems supportability principles and applications
- Optimization and streamlining of processes that solve problems
- Advisors and coauthors: Dr. Shahram Sarkani and Dr. Thomas A. Mazzuchi

This research focuses on system affordability

□ System affordability

A key topic of discussion within Industry and (DoD)

□ Adjustments in system requirements

 Increased affordability focus requires adjustment in the way program requirements are defined/viewed by both customers and developers

□ Program acquisition success

Technical performance alone does not guarantee success

End result

 Customer requirements are moving toward more <u>affordable solutions</u> that <u>minimize operation and sustainment costs</u>

Affordability focus is palpable: Decreasing budgets is a trend

DoD budgets are decreasing

- Many policy statements about affordability
 - » More than 50 since 2010
- Focus on Innovation and affordability

□ Affordability trends in 2012

http://www.defense.gov/news/2013budget.pdf

- RAMS "Reliability, the key to a better bottom line"
- NDIA (April 2012) Ensuring operational logistics effectiveness
- DTAR Defense Technology and a Affordability Requirements 2012 conference
- Development of HB-0009 by Tech America/ANSI partnership

□ INCOSE has an affordability working group charter

Modular designs and COTS integration are critical for affordable solutions

- Increased budgets for Small Business Innovation Research (SBIR) and Small Business Technology Transfer (SBTT)
 - More available funds, more innovation, more COTS products to choose from
- Market saturation
 - The push for innovative and COTS-based modular solutions can create decision making problems
- Given a mission profile and operational environment
 - How do we select the appropriate products in a COTS-saturated market?
 - What COTS attributes and capabilities do we focus on?
 - How do we ensure that the end product passes the "affordability litmus test"?

Informed decisions are needed during COTS integration

- □ Problem: Uninformed selection of COTS products leads to overdesigned and overpriced systems
 - Designers and system engineers need more tools that help in the selection process
 - One system design does not fit all (different mission profiles and operation parameters)

Solution Approach

- Incorporate mission criticality analysis and requirements engineering in the COTS selection process
- Create a model that helps designers and systems engineers make informed decisions during COTS integration for new designs and/or for updates to existing designs

Informed decisions during COTS integration lead to affordable solutions

- □ System specs and SWaP
- Mission criticality analysis
- RequirementsEngineering
- Decision making trade studies
- Potential solutions
 - Best <u>technical</u> and <u>affordable</u> solutions

The main goal is to utilize system engineering methodologies and concepts to develop a tool that helps in the decision making process

One can create a model-based approach for trade studies involving COTS integration

- MATLAB® /MathCAD®/ VBA®
- □ System's Inputs
 - Systems requirements
 - Fault tree analysis
 - System failure data
 - Money available for design/improvements
- COTS inputs
 - Physical properties: weight and size/volume
 - Features and attributes: reliability, cost, security, and safety
- Conduct Mission Critically Analysis (MCA)
 - Provides the weighted parameters for the sensitivity analysis
- Success definition
 - Trade offs between potential COTS products and highlight cost-effective designs

The goal of MCA is to obtain a set of weighted parameters to be used in the sensitivity analysis

- Assessment of current COTS selection process
 - Defense acquisition guidebook: Systems engineering and COTS (section 4.4.2)
 - Use existing research and best system engineering practices
- □ Full assessment of mission profile
- Data collection methodology
 - Consult a group of experts via surveys
 - Gather the data, analyze the data, recommend weighted parameters
- Weight parameters will be a function of mission profile, relevant COTS characteristics, and cost

One can obtain useful data for the sensitivity analysis by surveying field experts

- □ Generate survey questions
 - Tap into CoP initiatives and leverage relevant research
 - Fine tune the survey by conducting a set of iterations with a focus group
 - Finalize survey questions (web- based or traditional survey methods)
- □ Survey a group of experts
 - Systems engineers, system designers, safety engineers, reliability engineers, maintainability engineers, security and anti-tampering experts, and so on
- Conduct regression analysis and assess statistical significance

MCA begins by categorizing mission profiles based on three general mission environments

Protected Environment

- Maintainable /controlled environment, temperature range from 0°C to +70°C
- Application life span up to 5 years

Normal environment

- Inhabited applications/usually maintainable/uncontrolled but not extreme
- Minimal to medium controlled shock/vibration. Temperature from -40° to +85°C
- Life span from 5 to 10 years

Severe Environment

- Uninhabited applications, varying temperatures and extremes
- Temperature ranges from -55°C to +125°C
- Medium to high shock, pressure, vibration, life span of 10 to 20 years

http://src.alionscience.com/pdf/Reliability_Prediction_Env_Conversion.pdf

Weighted parameters are generated by mapping mission profiles to specific environments

http://src.alionscience.com/pdf/Reliability_Prediction_Env_Conversion.pdf

Model framework concept with weighted parameter inputs for COTS trade studies

The goal is to generate weighted parameters by managing risk and cost responsibly

□ Let's consider 3 general mission profiles for UAVs

Critical missions

- » Military missions
- » Weaponized systems
- Missions over populated areas
- Reconnaissance missions

- » Some military missions
- » Local law enforcement
- » Border patrol/ Coastguard
- Exploration and commercial missions

- » Forestry and agriculture
- » Traffic monitoring
- » Scientific missions

Example of weighted parameters for UAVs

Problems and Challenges

Deciding on a modeling tool

MATI AB® / MatCAD® / VBA® / iThink®

Underlying model challenges

- Appropriate failure distribution assumptions
- Modeling cost parameters/functions
- Future need to normalize metrics for COTS features and attributes

Availability of failure data

- Limited time to failure data for many systems
- Fitting data to the appropriate distribution could be a challenge

Conclusion

- A model-based approach for trade studies involving COTS was described and an example was presented
- □ The model can help designers and systems engineers make informed decisions during COTS integration
- □ The model can also help in the renegotiation of unnecessary or unrealistic system requirements
- □ In the end, companies need to embrace innovation and solve the COTS selection puzzle to stay competitive

Q & A

Contact information for NDIA point of contact

Gabriel Lopez

George Washington University

gablop@gwmail.gwu.edu

Mobile: 202.494.7227

Work Phone: 410.765.8067