

Risk-based Resiliency Assessment Framework

Achieving Resilient U.S. Space Architectures

Andrew Long
October 2012

KTSi

Achieving Resilient U.S. Space Architectures

- "Resiliency" has become a key criterion in design of U.S. space systems
 - Assure military space-enabled functions
 - Prepare for operations within a degraded space environment
 - Account for hostile actions (man-made) and adverse conditions (natural)

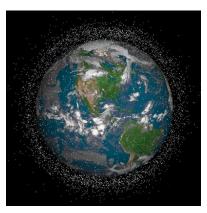
US National Space Policy calls for increased "assurance and resilience of mission-essential functions... against disruption, degradation, and destruction, whether from environmental, mechanical, electronic, or hostile causes."

~ National Space Policy of the United States of America. 28 June 2010

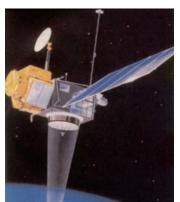
US National Security Space Strategy calls for resilience as a key criterion in evaluating alternative [space] architectures.

What is "Resiliency"

Resiliency is the ability of an architecture to support the functions necessary for mission success in spite of hostile action or adverse conditions.


An architecture is "more resilient" if it can provide these functions with higher probability, shorter periods of reduced capability, and across a wider range of scenarios, conditions and threats

OSD Policy Approved Definition, 2011


Threat Continuum

Natural

Adverse

How does one measure and design for "Resiliency"?

Resiliency Evaluation

US DoD and DNI provide the following evaluation criteria as a common means to assess resilience for any given functional architecture

"Resilience of Space Capabilities". US Department of Defense and Office of the Director for National Intelligence, National Security Space Strategy. Accessed 11 March 2012.

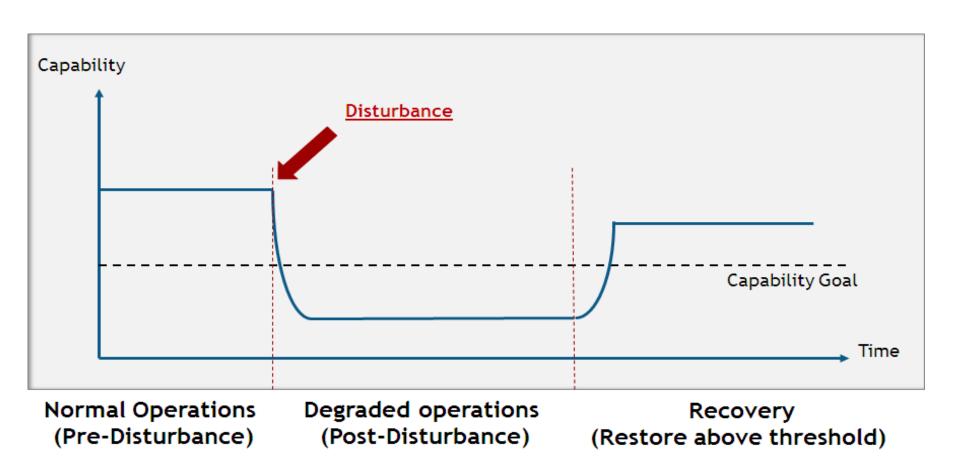
- Anticipated level of adversity
 - Disturbance (Natural, Man-made, Hostile, etc)
 - Disturbance Awareness (Ability to identify potential disturbances)
- Functional capability goals necessary to support the mission (Mission essential Function, Capability Need, Measures of Performance, etc.)
- The risk that these goals may not be met at a given level of adversity
- The severity of the functional shortfall to the mission
- The time which the shortfall can be tolerated by the mission

Challenge: Context - Dependent (Mission, Scenario, etc.)

Resiliency is a multi-context (dynamic) problem!

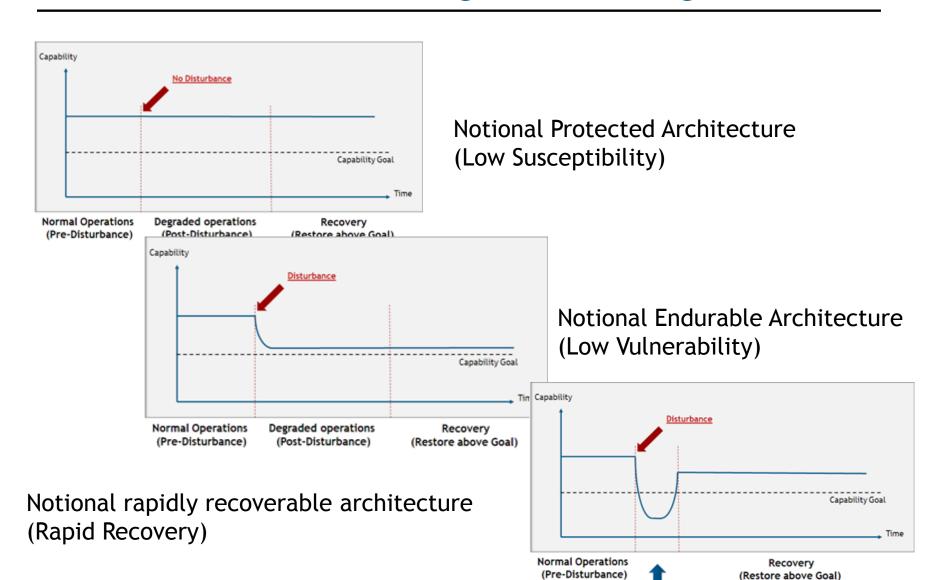
Survivability (Static Context)

Survivability Elements


- Awareness: Ability to detect, characterize, and/or attribute a given threat.
- **Susceptibility***,*: The degree to which a weapon system is open to effective attack due to one or more inherent weakness.
- **Vulnerability***,*: The characteristic of a system that causes it to suffer a definite degradation as a result of having been subjected to a certain level of effects in an unnatural hostile environment.
- **Recovery*:** Following combat damage, the ability to take emergency action to prevent loss of the system, to reduce personnel casualties, or to regain weapon system combat mission capabilities.

^{*} Department of Defense (DoD) Regulation 5000.2-R (2002)

⁺ DAU Glossary of Defense Acquisitions Acronyms & Terms, 13th ed.



Survivability: Visual Pictorial

Disturbance Mitigation Strategies

Degraded operations (Post-Disturbance)

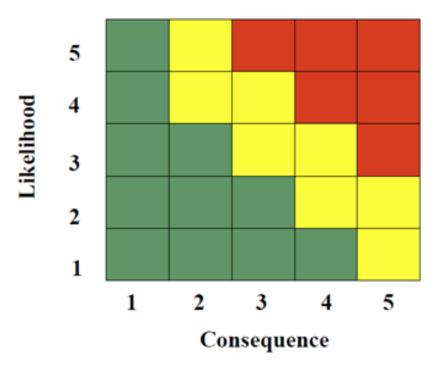
Survivability: Design Principles

Susceptibility Reduction						
Prevention	Suppression of a future or potential future disturbance					
Mobility	Relocation to avoid detection by an external agent					
Concealment	Reduction of the visibility of a system from an external agent					
Deterrence	Dissuasion of a rational external agent from committing a disturbance					
Preemption	Suppression of an imminent disturbance					
Avoidance	Maneuverability away from an ongoing disturbance					

	Vulnerability Reduction						
Hardness	Resistance of a system to deformation						
Heterogeneity	Variation in system elements to mitigate homogeneous disturbances						
Distribution	Separation of critical system elements to mitigate local disturbances						
Fail-safe	Prevention or delay of degradation via characteristics of incipient failure						

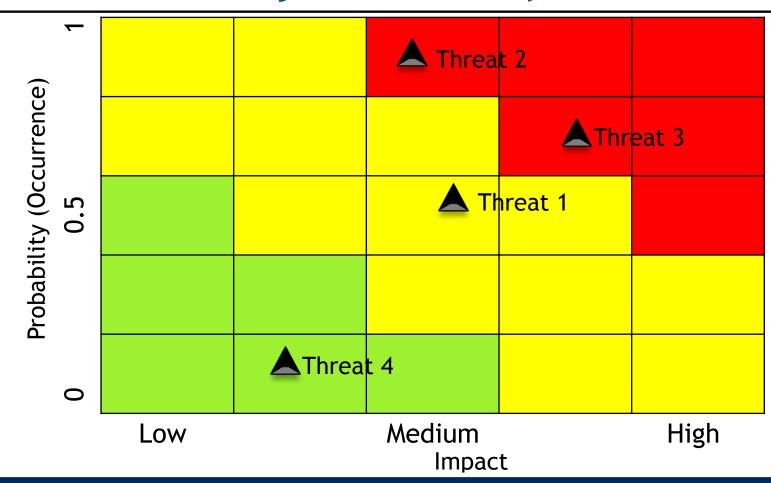
Impact Reduction						
Redundancy	Duplication of critical system functions					
Margin	Allowance of extra capability for maintaining value despite impact					
Failure mode	Reduction elimination of system hazards through intrinsic design: substitution, simplification, etc.					
Evolution	Alteration of system elements to reduce disturbance effectiveness					
Containment	Isolation or minimization of the propagation of failure					

	Recovery Enhancement
Replacement	Substitution of system elements to recovery value
Repair	Restoration of system to recover value


Richards, M.G., Hastings, D.E., Rhodes, D.H., and Weigel, A.L., "Defining Survivability for Engineering Systems," 5th Conference on Systems Engineering Research, Hoboken, NJ, March 2007

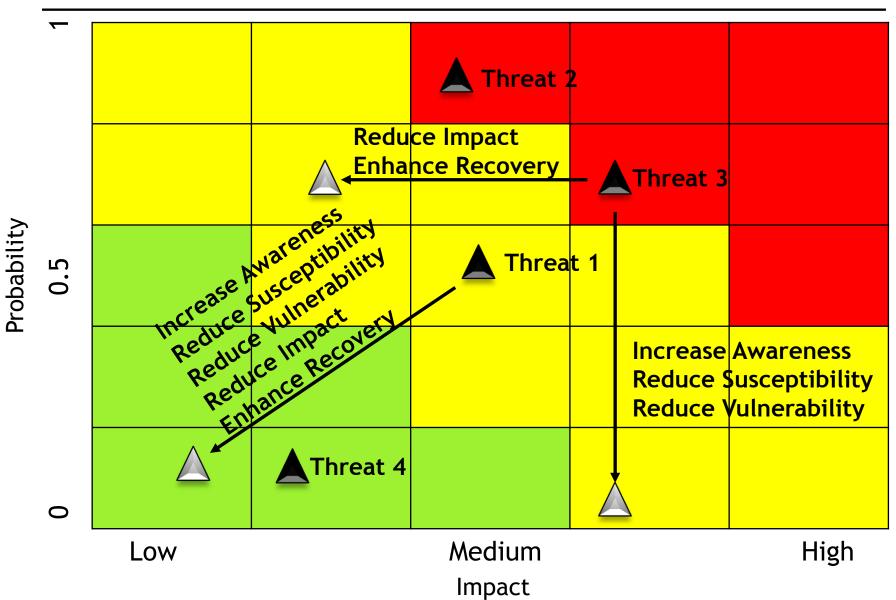
DoD Risk Assessment

Three components are utilized in evaluating risk:


- 1. Potential disturbance
- 2. Probability (or likelihood) of the future disturbance occurring
- 3. Consequence (or effect)

Risk Reporting Matrix

Survivability Assessment of Risk Posture



$$p(\text{occur}) = p(\text{Threat}) * intent * [(p(A)p(S_1)p(V_1)) + (1 - P(A))p(S_2)p(V_2)]$$

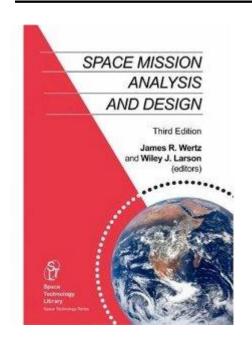
 $Impact = \sum W_i D_i,$ where D_i = f(Capability Loss, Outage Duration, Recovery Cost, etc.) & W_i = Weighting

Identify Risk Mitigation Approaches

Resiliency Assessment

Contexts

Mitigation Options			Resiliency Assessment	
Baseline				\$
Increase Awareness				\$\$
Reduce Susceptibility				\$\$\$
Reduce Vulnerability				\$\$\$\$
Reduce Impact				\$\$\$\$\$
Enhance Recovery				\$ ¹⁰


Questions

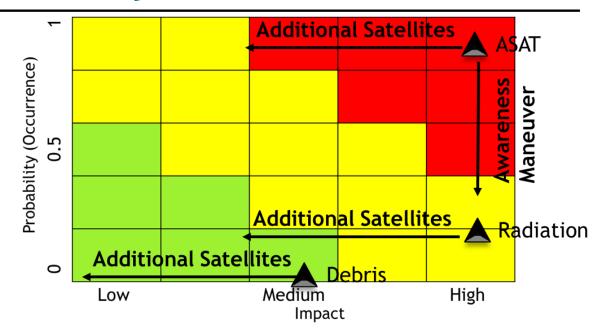
Example FireSat

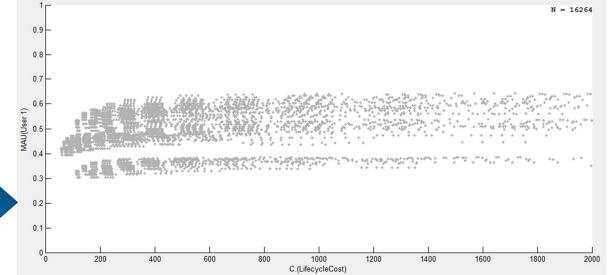
FireSat Overview

Design Tradespace

_	
Design Variable	Sample
Aperture	0.2 - 0.9m
Altitude	400 - 1000km
Inclination	30 - 75 deg
Design Life	4-10 yrs
# Sats	1-3

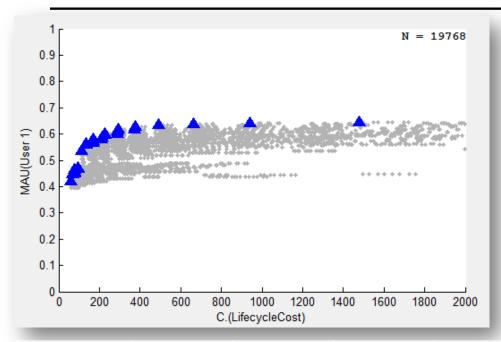
Notional "Threat" Assessment


Threat	P(Threat)	Intent	P(A)	P(S ₁)	P(V ₁)	P(S ₂)	P(V ₂)	P(Occur)
Radiation	0.2	1	1	1	1	1	1	0.2
Debris	0.1	1	0.9	0.2	1	1	1	0.028
ASAT	1	1	0	0.9	1	1	1	0.95
ASAT	1	1	0	0.9	1	1	1	0.95

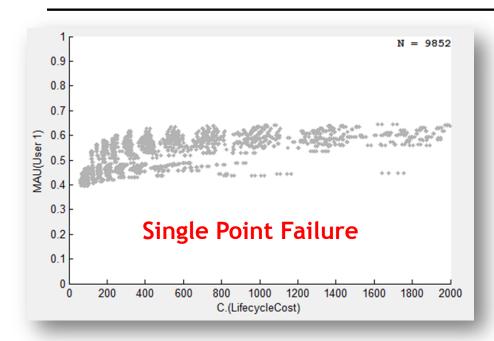


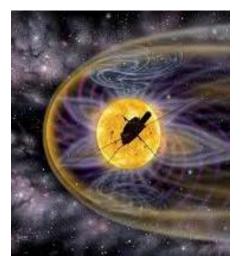
Resiliency Evaluation

Modified Design Tradespace


Design Variable	Sample			
Aperture	0.2 - 0.9m			
Altitude	400 - 1000km			
Inclination	30 - 75 deg			
Design Life	4-10 yrs			
# Sats	1-3			
Hardening	Yes / No			
Maneuvers	Yes / No			
Awareness Sensors	Yes / No			

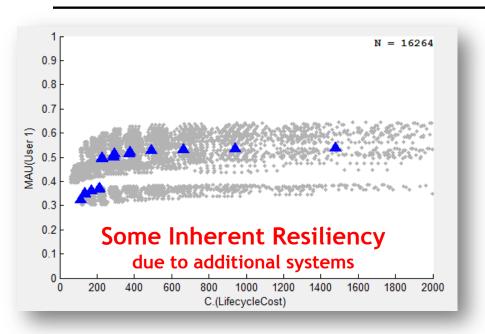
"Best Design" - Benign Environment


No Survivability Measures


(e.g Awareness, Maneuver, Hardening, etc.)

Aperture	0.2m	0.3m	0.4m	0.5m	0.6m	0.7m	0.8m	0.9m
Altitude	1000km	900- 1000km	700- 1000km	900- 1000km	1000km	1000km	1000km	1000km
Inclination	75	75	75	75	75	75	75	75
Design Life	10	10	10	10	10	10	10	10
# Sats	1-2	1-3	1-3	1-3	1	1	1	1
Lifecycle Cost	\$57-111M	\$66-227M	\$77-290M	\$92-376M	\$497M	\$663M	\$942M	\$1,478M

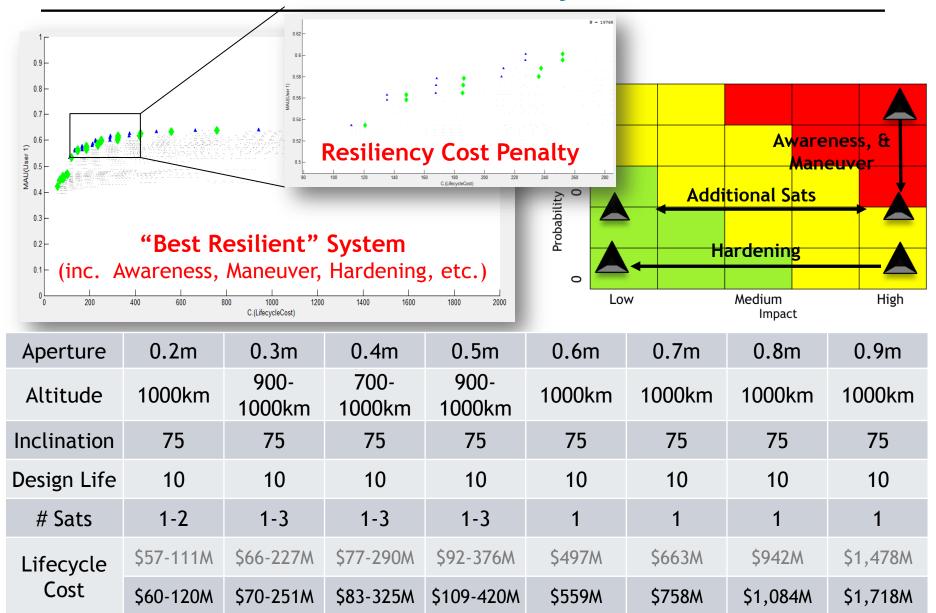
"Best Design" in non-benign Environment



No Survivability Measures (e.g Awareness, Maneuver, Hardening, etc.)

Aperture	0.2m	0.3m	0.4m	0.5m	0.6m	0.7m	0.8m	0.9m
Altitude	1000km	900- 1000km	700- 1000km	900- 1000km	1000km	1000km	1000km	1000km
Inclination	75	75	75	75	75	75	75	75
Design Life	10	10	10	10	10	10	10	10
# Sats	1-2	1-3	1-3	1-3	1	1	1	1
Lifecycle Cost	\$57-111M	\$66-227M	\$77-290M	\$92-376M	\$497M	\$663M	\$942M	\$1,478M

"Best Design" in Contested Environment


No Survivability Measures (e.g Awareness, Maneuver, Hardening, etc.)

Aperture	0.2m	0.3m	0.4m	0.5m	0.6m	0.7m	0.8m	0.9m
Altitude	1000km	900- 1000km	700- 1000km	900- 1000km	1000km	1000km	1000km	1000km
Inclination	75	75	75	75	75	75	75	75
Design Life	10	10	10	10	10	10	10	10
# Sats	2	2-3	2-3	2-3		1	1	1
Lifecycle Cost	\$57-111M	\$66-227M	\$77-290M	\$92-376M	\$497M	\$663M	\$942M	\$1,478M

Innovate - Engineer - Execute

"Best Resilient" Systems

