

Weapon Design Tradeoff: Using Life Cycle Costs

Quentin Redman Director – Solutions Architect PRICE Systems, L.L.C

Customer Success

Weapon Design Tradeoff . . . Using Life Cycle Costs

LCC: What is it?

Definition:

MIL-HDBK-259 (Navy) gives a comprehensive (if long winded) expanded definition:

"LCC is the sum total of the direct, indirect, recurring, non-recurring, and other related costs incurred, or estimated to be incurred in the design, research and development (R&D), investment, operation, maintenance, and support of a product over its life cycle, i.e. its anticipated useful life span. It is the total cost of the R&D, investment, O&S and, where applicable, disposal phases of the life cycle."

 More simply: LCC is the total cost to the customer for a program over its full life.

Includes all costs directly and indirectly attributable to the program.

The Phases of the Life Cycle

LCC = RDT&E \$ + Procurement \$ + O&S \$ (+ Disposal \$)

- Phase 1: Research, Development, Test, Evaluation (RDT&E)
- Phase 2: Procurement (or Acquisition)
- Phase 3: Operations and Support (O&S)
- Phase 4: Disposal (Sometimes a subset of O&S)

LCC: Why do we us it?

By ignoring O&S and disposal costs what are you missing?

<u>System</u>

Missile ("Wooden Round")	<u>% of LCC</u>
• RDTE	11%
 Production/Acquisition 	77%
• O&S	12%
Ship (Average)	
• RDTE	3%
 Production/Acquisition 	37%
• O&S	60%
Aircraft (F-16)	
• RDTE	2%
 Production/Acquisition 	20%
• O&S	78%
Ground Vehicle (M-2 Bradley)	
• RDTE	2%
 Production/Acquisition 	14%
• O&S	84%

- Early design efforts determine LCC.
- By the time requirements are set over 80% of LCC is committed by design decisions.
- By the time the design is final approximately 90% of LCC is committed!!!!
- Clearly the time to evaluate LCC is EARLY!!

LCC: How do we use it?

- Option evaluation
 - LCC allows the evaluation of competing system proposals on the basis of total ownership cost.
- Improved Awareness:
 - LCC allows management and stakeholders a broader and more accurate assessment of cost drivers.
 - May be a first glimpse of the total cost of ownership.
 - Facilitates the appropriate focus of resources to where they are needed.

Source: Analyses by the Naval Sea Systems Command and the Center for Naval Analysis GAO/NSIAD-98-1

LCC: How do we use it?

- Improved forecasting and budgeting
 - Understanding LCC allows more effective budgeting of future funds such as O&S costs and disposal costs.
 - Helps prevents budgeting surprises
- Cost Strategy Support
 - LCC perspective maximizes the benefit of applying strategies.
 - Cost as an Independent Variable (CAIV)
 - Design to Cost (DTC)
 - Reduced Total Ownership Cost (R-TOC)

UFAC = Unit Fly Away Cost FY 05 \$M D Reimb= flying hour reimbursement rate

LCC – Phasing and Funding <u>THE DODI 5000 MODEL</u>

051 Funds (DOD TOA)

Military Personnel O&M Procurement RDT&E Military Construction Family Housing R&M Funds Defense Wide Contingency Offsetting Receipts Trust Funds Inter-fund Transactions 11/1/2012

Total Research, Development, Test & Evaluation

- 6.1 Basic Research
- 6.2 Applied Research
- 6.3 Advanced Technology Development
- 6.3 Advanced Component Development & Prototypes
- 6.4 System Development & Demonstration
- 6.4 RDT&E Management Support Operational Systems Development

IOC

Trade Space Window Of Opportunity

Operations & Support

Missile Cost History

DoD Budgets on a Yearly Basis but Plans on a 5 / 6 Year Cycle

"HOW" Design to LCC IS UTILIZED

1. Determine the *customer concerns* and understand those concerns

- Explicit States cost goals or operating budgets
- Implicit Customer desire to reduce operational staffing
- Next Phase Contract contains a limited budget / funding
- Unit Production Average unit production cost (AUPC) goals
- Total Ownership Costs (TOC) Reduced total ownership costs (RTOC)
- Life Cycle Costs (LCC) must be some determine percent (normally 30%) less than the replacement system

2. Determine how the *competition impacts* affordability

- Marketing determines cost time to WIN the contract
- Existing inventory items with potential modification costs

3. Set design goals (including system cost goals and targets)

- Top level system or architecture
- Subsystems
- All phases

4. Understand system requirements vs. system affordability

- Perform economic analysis
- Establish a cost as an independent variable, design to life cycle costs or design to cost program

5. Review the present estimates against goals often and react appropriately and expediently

Planning the Analysis

- Determine the life cycle
 - System service life: Useful life of the system depends on what the system is.

(i.e. aircraft – 25 years, ship – 50 years, missile – 20 years, bridge – 100 years, etc.)

 Planning Horizon: Period of time over which all costs are estimated.

 May not coincide or may change over time.

Planning the Analysis

- Cost element structure (CES)
 - Estimating LCC requires breaking down the system into its cost elements and time phasing them.
 - There is no standard CES for all LCC applications due to the tremendous variation in systems and programs (aircraft, missiles, electronics, ships, infrastructure, etc)
 - The CES may be imposed as a requirement
 - The level of CES detail will depend on the system as well as the purpose of the analysis. Consider:
 - Estimation methodology
 - Significant cost generating components.
 - Support philosophy

		_	Cost Element Structure			
		2.000 Procureme	1.000	RTDT&E Funded Elements		
		Production 8		Concept & Tech Development		
		2.010 NonRecurring P	1.010	Development Engineering & Planning		
3.000	Military Constru	ction Funded Eleme	1.020	Producibility Engineering & Planning		
3.010	Development Construct	ion	1.030	Development Tooling		
3.020	Production Construction	ו	1.040	Prototype Manufacturing		
3.030	Operational/Site Activat	tion Construction	1.050	System Engineering/Program Management		
3.040	Other Military Construction		1.051	Project Management Administration		
			1.052	Other		
4.000	Military Personr	nel Direct Funded El	1.060	System Test and Evaluation		
4.010	Crew		1.070	Training		
4.020	Maintenance		1.080	Data		
4.030	System-Specific Suppo	rt Managart	1.090	Support Equipment		
4.040	System Engineering/Program Management			1.091 Peculiar		
4.041	Other	uninstration	1.092	1.092 Common		
4.042	Replacement Personne	I	1.100	1.100 Development Facilities		
4.051			1.110	Other RDT&E		
4.052	2 Permant Change of Station			System Dev & Demonstration		
4.060	Other Military Personne		1.010	Development Engineering & Planning		
			1.020	Producibility Engineering & Planning		
5.000	Operations and	Maintenence Funde	1.030	Development Tooling		
5.010	Field Maintenance Civil	ian Labor	1.040	Prototype Manufacturing		
5.020	System Specific Base C	Operations	1.050	System Engineering/Program Management		
5.030	Replensihment Depot L	evel Reparables (Spares)	1.051 Project Management Administration			
5.040	Replenishment Consum	nables (Repair Parts)	1.052	1.052 Other		
5.050	Petroleum, Oil, and Lub	pricants	1.000	System Demo		
5.060	End Item Supply and M	aintenance	1.001	Training		
5.061	Overnaul	agement	1.070	Data		
5.062	Supply Depot Support	lagement	1.000	Support Equipment		
5.064	Industrial Readiness		1.091	Peculiar		
5.065	Demilitarization		1.092	Common		
5.070	Transportation		1.100	Development Facilities		
5.080	Software		1.110	Other RDT&E		
5.090	System Test and Evaluation	ation, Operational				
5.100	System Engineering/Pro	ogram Management				
5.101	Project management Ad	dminstration				
5.102	Other					
5.110	Other O&M					
5.120						

6.000 Defence Business Operations Fund Elements

6.010 Class 1X War Reserve 6.020 Other DBOF

Select / Develop the Model

- Some general guidelines
 - Should be responsive to changes in design and operational scenarios.

- It should clearly incorporate all major cost drivers.
- Include clear documentation
- User friendly and should not require special programming support.
- Allow for adjustment of inflation, discounting, and learning curve where appropriate.
- Be able to compare and contrast alternatives
- Identify areas of uncertainty
- Support sensitivity analysis

HEL Weapon Cost Model - BETA #3 Release Of 5/29/02 - GLS (545-6104)

the second se					
Notes: User input Cells are in Blue. Red idenotes key areas			Yearly diode buy C	uantity: s	ee N4
DURCE DATA					
Acquisition Scenario			From ASP Study (Ca	an also Us	e Therman's model
Development (EMD)	See Cost Distribu	tion Model)	Enter total anticipat	ed produc	tion quantity
Total ADM Protype Quantity	1.5	3	= Years in ADM Pha	se	
Total SDD Protype Quantity	4	4	= Years in SDD Pha	se	
SDD Production Occurs From	2007	2011	4		
Total Production Quantity	344		Entor total anticipat	od produc	tion quantity
Production Occurs From	2012	2027	15	Voare ove	which this produ
Production Rate (Yearly even)	22.93	2021	Average Quantity B	uilt Each Y	ear
085	22.00		lised Therman's mo	del to calo	ulate this
Years Operational	10		Estimated Fielded (Operation	al) Years for each u
Years from Production to IOC	2		Must be 1 or greater		ally rears for each a
Net Years of O&S Costs	26		0.692	= Cost fa	ctor for each avera
Fielding	2.5%		Used Therman's mo	del to calo	culate this
Annual Sustainment (O&S)	9.0%		Used Therman's mo	del to calo	culate this
Economics					
Constant Year Dollars	2002		Model is built using	2002 dolla	ars
Overhead rates (Composite)	50%		Used to calculate al	non HW	direct costs
Learning Curve					
Labor	0.90	-0.152003093			
Commerical Items (diodes)	0.92	-0.120294234	Also used in Cost	Distributio	n model to calculate
Material & Purchased Parts	0.95	-0.074000581			
Production Parts	0.89	-0.168122759			
	Specifications	Terminology	Unit Cost (\$ K)	Factors	
MMWV Laser WS Concept Unit Production Cost			4,583.47		
Platform (HMMWV) and Shelter			125.94		At 200 Units
HMMWV		From VMADS Study	97.05		101.03
Roof/Structure		From VMADS Study	9.30		9.68
Gyro Support		From VMADS Study	4.65		4.84
Structure IA& I		From VMADS Study	9.99		10.40
HEL Weapon			3,937.22		
Laser Subsystem			1,792.7		
Laser Diodes	15	KW Laser Energy Output	952.0	63.46	AUPC for array - S
2 Watt Diode Cost \$	\$1,190.00	Est. Unit Cost in low quant	1ty	\$153.50	Unit cost (from inte
Adaptive Optics - beam snaping	13.0 Missing (In Adapt	cm -Edge Size for Wilffor	3/1.//	Note; this	Length is hard wir
Laser Materiala (CCC Heat Capacity)		om Edge Size for Motorial	WISSING 02 74		
Mirors	3	Number	26.99	8.0	Weight Each in LB
PEM Cards	\$10.50	\$K for first unit card (T1)	319 79	108	Number of Cards (
Inter-Cavity Beam Control	Missing (In Adapt	ive Optics?)	Missing		
Structure - Laser & associated assemb	li 200.0	Lbs - Assume Steel Rails	32.44		
Diode Current Regulator	Missing (In PFM C	Cards?)	Missing		
Beam Control Subsystem		· · · · ·	1,648.22		
EO Laser Tracker	344	ATFLIR - Learning to Qty	1,088.79		
Tracker	90%	% ATFLIR Cost	826.41		
Illuminator - 30W	35%	% ATFLIR Cost	126.65		
Power	75%	% ATFLIR Cost	12.80		
Video	75%	% ATFLIR Cost	85.98		
Structure	25%	% ATFLIR Cost	36.95		
Telescope	Missing (In Mirror	rs?)	Missing		
Beam Steering	Missing (In Mirror	rs?)	Missing		
Main Beam Director	5	Number or Mirrors	181.65	15.0	Edge in cm Mirrors
Adaptive Optics	1	Number or Mirrors	377.77	13.0	cm -Edge Size for I
Beam Clean-up	Missing (In Adapt	ive Optics?)	Missing		
Power Subsystem	346.42	KW Power to Generate	338.99	280	KW Power VMADS
System Power Generator				4.33%	Efficiency - Input po
Intermediate Power Storage				750/	Detter Decharge 6
Power Processing Unit				15%	Dattery Recharge fa
Power Controller Unit Batton: Subsystem (Advasced)	346	KW Stored Energy	214 59	23.00	Scalling Easter to a
Bower Conditioning	340	VMADS % from 100 KM	211.58	23.09	Scaled from \/MAD
Power Conditioning	31%	VIVIADS % HOITI TOU KW	104.69		Scaled from VMAD
Curl Assu	0%	VMADS % from 100 KW	-		Scaled from VMAD
Source Supply	31%	VMADS % from 100 KW	0.25		Scaled from VMAD
Structure	31%	VMADS % from 100 KW	9.35		Scaled from VMAD
Electronics	31%	VMADS % from 100 KW	0.35		Scaled from VMAD
Power Conditioning IA&T	31%	VMADS % from 100 KW	6.02		Scaled from VMAD
Thermal Cubeveter	004.00	KW Devests Dissignts	457.05	100	

LCC vs. Sunk Cost

LCC = RDT&E \$ + Procurement \$ + O&S \$

Sunk costs are cost already spent

Committed costs are contracted for costs not yet spent (Sunk) - Where in the cost to cancel equals or exceeds the cost to continue the effort.

Therefore, early in SDD, the LCC_a still subject to design trades is:

Software is included in the "Best Value" Alternative

DECISION POINT

Trade Study Design Alternatives With Physical and Functional Characteristics

Technology, Tools, Existing Products, IR&D, etc.

Software Issues

- Functions Performed
 - Lines of code
 - Interfaces
- Coding Group Capabilities
- Environment
- Schedule
- Existing (mod/reuse/etc)

Missile Alternative

- Physical and Functional Characteristics
 - Size, Weight, Speed, Range, Payload, etc.
 - Functions Performed (Search, Ballistic Load, etc.)
 - Hardware Resident
 - Seeker Head
 - Propulsion, Warhead, etc.
 - Software Resident
 - Target ID, Tracker, etc.
 - HW/SW Combined
 - Position in Space (IMU and GPS)

Software Alternatives... Consider the Life Cycle

Software DECISION POINT

Cost Risk and Uncertainty

- Cost risk and uncertainty refer to the fact that because a cost estimate is a forecast, there is always a chance that the actual cost will differ from the estimate.
 - lack of knowledge about the future
 - the error resulting from historical data inconsistencies, assumptions, cost estimating equations, and factors that were used to develop the estimate
 - biases get into estimating program costs and developing program schedules.
 - biases may be cognitive—often based on estimators' inexperience
 - or motivational where management intentionally reduces the estimate and/or shortens the schedule to make the project look good to stakeholders.
 - Recognizing the potential for error and deciding how best to quantify it is the purpose of risk and uncertainty analysis.

From GAO Cost Guide, Chapter 14

Document and Review Results

- Review Results
 - Ground Rules and Assumptions
 - Modeled System
 - Overall LCC
 - Cost Drivers
 - Spikes
 - Measure of Effectiveness
 - Program Risks and Uncertainties

Document

- If no one can figure out what you did, how you did it, and why you did it ----- It doesn't count!!
- *(Hard truth: The program may last longer than you)

<u>Summary</u>

- LCC is the total cost to the customer for a program over its full life.
 - Cost, including LCC is an engineering design parameter.
 - Total cost impact, not just initial near-term cost, must be considered
 - Each Phase (Color of Money) estimate is important!
 - Early estimates are just estimates! Look at the risks and uncertainty within those estimates. Be prepared for and manage growth.
- More customers (especially government) are emphasizing and requiring an LCC perspective AND POTENTIALLY SEQUESTRATION BEING IMPLEMENTED.
 - Early design efforts determine LCC. Don't wait!!!!