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Motivation 

 Conceptual design 

methodologies typically 

focus on optimizing 

nominal performance, 

with constraints for off-

nominal conditions 

 Only guarantees adequate, 

not best performance in off-

nominal conditions 

 Yet, aerospace systems 

can spend significant time 

operating in off-nominal 

conditions 
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Robust System Design Context 

 Change the design 
 Increased margins 

 Cross-strapping, 
redundancy 

 Change the 
performance 
requirements 
 Change operations 

(plan operation in 
favorable modes) 

 Remove operational 
requirements (e.g. do 
part of the mission 
with another system) 

 Change the rate of 
state transition 
 Increased component 

testing, qualification 

 Use of higher-quality 
components 
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Multistate Sensitivity Analysis: Twin-Engine Aircraft 

 Investigated the 

sensitivity of 

traditional aircraft 

design variables on 

reliability in addition 

to component failure 

rates for C-12 

(Beech King Air)1 

 Results showed that 

reliability was far 

more sensitive to 

vertical tail 

parameters than to 

component failure 

rates 
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1. J. S. Agte, N. K. Borer, O. de Weck, “Multistate Design Approach to the Analysis of Twin-

Engine Aircraft Performance Robustness,” Journal of Aircraft, 49(3) 781-793, 2012. 
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Multistate Tradespace Exploration: Long-Endurance UAS 

 Investigated the tradespace 
of a long-endurance UAS 
 First considered a long-

endurance system with a 
notional power system and 
three-month endurance2 

 Next considered a more 
conventionally-fueled 
“squadron” of systems 
operated to enable 
persistent coverage over five 
years3 

 Both cases showed an 
increase in availability and 
reduction in cost over 
traditional approaches, as 
well as non-intuitive design 
features 

~2100 nm

tot. coverage ~ 100000 nm

Falklands

2. J. S. Agte, N. K. Borer, O. de Weck, “Design of Long-Endurance Systems 

With Inherent Robustness to Partial Failures During Operations,” Journal of 

Mechanical Design, 134(10), 2012. 

3. N. K. Borer, J. S. Agte, “Design of Robust Aircraft for Persistent Observation 

Campaigns Using Nested Multistate Design,” AIAA-2012-5452, AIAA Aviation 

Technology, Integration, and Operations Conference, September 2012. 

~20 hrs over continent
@ 50k ft  (~4400 nm)

avg. ingress/egress ≈2100 nm (~10 hrs)

2
1
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Multistate Exploration Yields Reduced Cost, Increased Availability vs. Traditional Approach 
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Acquisition Cost vs. Availability for 3-Month UAS 
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Life Cycle Cost vs. Availability for 5-year Campaign 

 Multistate design – cheapest LCC, highest 

availability, highest O&M cost, lowest combined 

acquisition cost (initial + spares) 
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Conclusions 

 Conceptual design of robust systems requires a 

change in perspective vs. traditional “design 

optimization” 

 Move away from constrained optimization of nominal 

performance to tradespace exploration across set of 

possible conditions 

 Integrated modeling & simulation is key to this early 

exploration 

 Capture interactions between systems, operations, 

requirements, and disciplines 

 Much to be gained by giving your reliability engineer 

a seat at the conceptual design table 

 Case studies show lower-cost, higher-availability designs 

are very possible 
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It’s Not Off-Nominal if You’ve Designed for it! 
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Additional Information 
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Integrated Parametric Flight Dynamics Model 

 Built around MATLAB® 
and Simulink® for ease of 
integration with other 
analyses 
 MATLAB® calls to open-

source aerodynamics 
module, custom-built 
analyses 

 Flight dynamics model 
built as Simulink S-
function from open-source 
flight dynamics engine 
 Allows for evaluation of 

control architectures, 
failure models in Simulink 

 Outputs can be ported to 
quasi-real-time flight 
simulator for visualization 
and “pilot” operation 
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Behavioral-Markov Modeling 

 Behavioral-Markov modeling offers an 
opportunity to predict and capture system 
behavior in an exhaustive combination of off-
nominal events 

 Legacy: CAME (Computer Aided Markov 
Evaluator) used for fault-tolerant system 
development for high-reliability space and 
ground systems 

– Able to capture cascading failures through 
integrated system model 

 PARADyM (Performance and Reliability 
Analysis via Dynamic Modeling) enhances 
CAME’s capabilities by directly simulating every 
Markov state with a behavioral model 

– System performance is captured for every 
Markov state 

– Status is determined directly from system 
performance 
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Effect of Geometry of Performance in Failed States 

-500 0 500 1000 1500 2000 2500
20

25

30

35

40

specific excess power, P
s
 (fpm)

b
a

n
k
 a

n
g

le
 (

d
e

g
)

Nominal State

unsafe region

safe region

-500 0 500 1000 1500 2000 2500
20

25

30

35

40

specific excess power, P
s
 (fpm)

b
a

n
k
 a

n
g

le
 (

d
e

g
)

State 1: Left Engine Failed

unsafe region

safe region

-500 0 500 1000 1500 2000 2500
20

25

30

35

40

specific excess power, P
s
 (fpm)

b
a

n
k
 a

n
g

le
 (

d
e

g
)

State 2: Rudder Failed

unsafe region

safe region

-500 0 500 1000 1500 2000 2500
20

25

30

35

40

specific excess power, P
s
 (fpm)

b
a

n
k
 a

n
g

le
 (

d
e

g
)

State 3: Ailerons Failed

unsafe region

safe region

-500 0 500 1000 1500 2000 2500
20

25

30

35

40

specific excess power, P
s
 (fpm)

b
a

n
k
 a

n
g

le
 (

d
e

g
)

State 4: Left Engine, Ailerons Failed

unsafe region

safe region

-500 0 500 1000 1500 2000 2500
20

25

30

35

40

specific excess power, P
s
 (fpm)

b
a

n
k
 a

n
g

le
 (

d
e

g
)

State 5: Left Engine, Rudder Failed

unsafe region

safe region

-500 0 500 1000 1500 2000 2500
20

25

30

35

40

specific excess power, P
s
 (fpm)

b
a

n
k
 a

n
g

le
 (

d
e

g
)

State 6: Rudder, Ailerons Failed

unsafe region

safe region

-500 0 500 1000 1500 2000 2500
20

25

30

35

40

specific excess power, P
s
 (fpm)

b
a

n
k
 a

n
g

le
 (

d
e

g
)

State 7: All Failed

unsafe region

safe region

Actual (non-weighted) performance in each Markov state for the 23 geometry cases 

Loss if Ps < 200 fpm, bank angle not held within 10 degrees 

Copyright  2012 by the Charles Stark Draper Laboratory, Inc. All rights reserved. 



Slide 15 

Aircraft Performance and Cost Model 

 Aircraft sizing and 

performance 

 Added loop to optimize 

cruise operation for 

maximum endurance in 

each failure configuration 

 Cost 

 Development and 

Procurement Cost of 

Aircraft model (DAPCA 

IV) updated for UAVs 

 Component reliability 

cost based on 

Draper/NASA study of 

cost vs. parts grades4 
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