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Motivation
If it's Going to Spend a Lot of Time Broken, Why Not Design it to Operate That Way?

e Conceptual design
methodologies typically
focus on optimizing
nominal performance,
with constraints for off-
nominal conditions

= Only guarantees adequate,
not best performance in off-
nominal conditions
e Yet, aerospace systems
can spend significant time
operating in off-nominal _ {
conditions Sl g

ﬁiﬁ“&‘- National Museum of the USAF NS

Slide 3 Copyright © 2012 by the Charles Stark Draper Laboratory, Inc. All rights reserved. I]IIAII[H

AAAAAAAAAA



Robust System Design Context

What is the best path to design for off-nominal events?
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Multistate Sensitivity Analysis: Twin-Engine Aircraft

More Leverage Exists to Increase Availability through Design Variables, not Failure Rates

e Investigated the
sensitivity of
traditional aircraft
design variables on
reliability in addition

to component failure v | | l=F"
rates for C-12 e ﬁ
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. . wing area—_| -
Ve rtl Cal tal I ail. failure rate |~ Component Failure Rates, A { |
rud. failure rate — i -
parameters thanto "™ ]
g. failure rate [—_|
component failure :
Normalized sensitivity of expected availability to design variables
rates 1. J.S. Agte, N. K. Borer, O. de Weck, “Multistate Design Approach to the Analysis of Twin-

Engine Aircraft Performance Robustness,” Journal of Aircraft, 49(3) 781-793, 2012.
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Multistate Tradespace Exploration: Long-Endurance UAS

Multistate Exploration Yields Reduced Cost, Increased Availability vs. Traditional Approach

e Investigated the tradespace
of a long-endurance UAS

= First considered a long-
endurance system with a
notional power system and
three-month endurance?

= Next considered a more
conventionally-fueled
“squadron” of systems
operated to enable
perS|stent coverage over five

years avg. ingress/egress 2100 nm (~10 hrs)
e Both cases showed an
Increase in availability and
reduction in cost over
traditional approaches, as
well as non-intuitive design

featu I’eS 2. J. S. Agte, N. K. Borer, O. de Weck, “Design of Long-Endurance Systems
With Inherent Robustness to Partial Failures During Operations,” Journal of
Mechanical Design, 134(10), 2012.
3. N. K. Borer, J. S. Agte, “Design of Robust Aircraft for Persistent Observation
Campaigns Using Nested Multistate Design,” AIAA-2012-5452, AIAA Aviation
Technology, Integration, and Operations Conference, September 2012.
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Acquisition Cost vs. Availability for 3-Month UAS

Multistate Approach Yields Lowest Cost, Highest Availability Solution
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Life Cycle Cost vs. Availability for 5-year Campaign

Multistate Design Yields Lowest Life Cycle Cost, Least Attrition for Multiyear Persistent Campaign
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e Multistate design — cheapest LCC, highest
availability, highest O&M cost, lowest combined
acquisition cost (initial + spares)
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Conclusions

It's Not Off-Nominal if You’ve Designed for it!

e Conceptual design of robust systems requires a
change in perspective vs. traditional “design
optimization”

= Move away from constrained optimization of nominal
performance to tradespace exploration across set of
possible conditions

e Integrated modeling & simulation is key to this early
exploration

= Capture interactions between systems, operations,
requirements, and disciplines

e Much to be gained by giving your reliability engineer
a seat at the conceptual design table

s Case studies show lower-cost, higher-availability designs
are very possible
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Additional Information
e
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Integrated Parametric Flight Dynamics Model

e Built around MATLAB®
and Simulink® for ease of
Integration with other
analyses

= MATLAB® calls to open-

source aerodynamlcs \ 7
m O d u I e y C u Sto m - b u i It | ey | Dimensions // Dimensions I Fuel tank location
| ’
analyses ! vass |/ : )
. . MATLABscripts Propertes 1 cas : | geeion
e Flight dynamics model
~ - - MATLAB S_Cl‘ipt_S for ;g':‘isni _-= - : Drag polar o
bullt as Simulink S- S T
function from open-source [wmssmiorpasstcds T [men
AVLforinduced drag & derivatives |= == == s& = = == = = e ] e =

flight dynamics engine [ o | YT

“ Simulation Attitude . -
(bootstrap) Heath | Time Sim

= Allows for evaluation of T D S B
control architectures, LS | somirear || Olple !
faillure models in Simulink /f“g“‘%f.___ n

e Outputs can be portedto  [o=_, PO

inputs double

e >

quasi-real-time flight ]
simulator for visualization |= L
and “pilot” operation
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Behavioral-Markov Modeling

e Behavioral-Markov modeling offers an
opportunity to predict and capture system
behavior in an exhaustive combination of off-
nominal events

CAME’s capabilities by directly simulating every
Markov state with a behavioral model
System performance is captured for every
Markov state

Status is determined directly from system i | :
performance e T

s Legacy: CAME (Computer Aided Markov 4P
Evaluator) used for fault-tolerant system < = —@+b)R(t)
development for high-reliability space and dP
ground systems 5 ~eRO-bR.(1)
Able to capture cascading failures through : P (t) = e @
integrated system model B (t)=e ™ —g @)
m PARADyM (Performance and Reliability :
Analysis via Dynamic Modeling) enhances ‘ or ‘ ?

| perturbation

time
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Effect of Geometry of Performance in Failed States

Actual (non-weighted) performance in each Markov state for the 23 geometry cases
Loss if P, <200 fpm, bank angle not held within 10 degrees
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Aircraft Performance and Cost Model

e Aircraft sizing and ]
performance

= Added loop to optimize
cruise operation for
maximum endurance in [izz:z:z:z::.':'zz:"*nsz.:zf
each failure configuration

e Cost

= Development and [ oo oo
Procurement Cost of aon |y - (e
Aircraft model (DAPCA N R
IV) updated for UAV's ; oo

= Component reliability =l
cost based on Y o

Draper/NASA StUdy Of ’ ;J 10'00 2(;00 ) “30‘0:)-" 4(;00 5(;00 6000
Cost VS_ parts grades4 NormalizedMeanTimeBetweenFaiI'ure

4. N. K. Borer et al., “Model-Driven Development of Reliable Avionics Architectures
for Lunar Surface Systems,” IEEE Aerospace Conference, March 2010.
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