Developing a Cost Estimation Probability Model of a Large Multi-Year System – An Experience Report

NDIA 2012

Kathleen Dangle, *Madeline Diep*, and Forrest Shull *Fraunhofer Center for Experimental Software Engineering*

© 2012 Fraunhofer USA, Inc. Center for Experimental Software Engineering

Center for Experimental Software Engineering

Context of Our Experience

- Program characteristics:
 - Aerospace domain
 - Large and mission-critical system
 - Prime contractor with many partners and subcontractors
 - Distributed development
 - Government oversight
 - Software-intensive and COTS heavy
- Cost estimation in preparation for Key Decision Point (KDP) to enter Concept & Technology Development

Why A Probability Distribution Model

- Cost estimation is an important part of program planning and tracking
- But it can be very difficult to do accurately
 - Single-point estimation does not account for uncertainties in the estimation sources and errors in the model
- Probability distribution model helps to understand the likelihood of achieving the point estimate
 - Required to budget the cost estimate at the 70% confidence level.

GAO Guidelines on Cost Estimation

Include probability distributions...As outlined in the GAO Publication*

- 1. Determine the program cost drivers and associated risks;
- 2. Develop probability distributions to model various types of uncertainty (for example, program, technical, external, organizational, program management including cost estimating and scheduling);
- 3. Account for correlation between cost elements to properly capture risk;
- 4. Perform the uncertainty analysis using a Monte Carlo simulation model;
- 5. Identify the probability level associated with the point estimate;
- 6. Recommend sufficient contingency reserves to achieve levels of confidence acceptable to the organization; and
- 7. Allocate, phase, and convert a risk-adjusted cost estimate to then-year dollars and identify high-risk elements to help in risk mitigation efforts.

*GAO Cost Estimating and Assessment Guide, GAO-09-3SP, March 2009

Center for Experimental Software Engineering

About Probability Distribution Models

- Usually represented in two views:
 - Probability Density Function (PDF)
 - Cumulative Density Function (CDF or S-curve)
- Describe the probability that a variable have a value less than or equal to *x*

USA

Building the Model

Step 1: Select Probability Model

- A number of probability distribution models are available to represent cost risks for the different cost elements.
- We selected the Weibull probability distribution
 - Traditionally used for reliability models
 - Flexible -- its three parameters can be adjusted to represent distribution curves such as the normal, logarithmic, Rayleigh, and exponential
 - A single model with the ability to accommodate multiple cost model profiles

On the Weibull Distribution

- Three parameters of Weibull model:
 - Shape: Affects the shape of the model, as well as slope of the model
 - Scale: Increasing its value while holding "Shape" variable constant has the effect of stretching out the probability model
 - Location: Provides an offset for the starting value of the (cost) variable

Effect of increasing the value of shape parameter

Building the Model

Center for Experimental Software Engineering

Step 2: Derive Bases of Estimates

- Large Program = Large and deeply nested WBS
 - Impractical to create a cost model for each item in the Work Break-down Structure (WBS)
- Created "buckets" for the WBS items and generated a cost model for each bucket
 - Items in a bucket should, intuitively, have similar types of uncertainty or risks
 - Buckets should be general enough to contain all items under Level 3 or 4 WBS elements

Buckets of Cost Elements

Building the Model

Step 3: Generate Model Profiles

Preliminary Model

- For all "buckets", set the *location* variable to be the original Initial Baseline Review (IBR) estimation
- Criteria for setting the scale and shape parameters:
 - For sub-systems' software cost bucket
 - Software labor cost tends to have larger uncertainty and to be prone to underestimations → the model is skewed to the left (median value >> IBR estimates)
 - Used variability in SW sizes (likely and high estimates) to adjust the skewness → the higher the variability, the more skewed the model
 - For sub-systems' hardware/software cost bucket
 - HW/SW material and licensing cost is generally stable where variability comes from amount of equipment to acquire → the model was skewed to the right (median value > IBR estimates)
 - For sub-systems' non-SW labor & program management (cross cutting concerns), I&T, and Deployment bucket
 - Some variability is expected \rightarrow used normal distribution model

Getting Subject Matter Expert Input

- Talked to 1-2 SMEs from each major sub-components
- Presented the preliminary model
- To facilitate the discussion, provided reference model of a set of Weibull distribution profiles
- Captured feedback:
 - The range and skewness of the model
 - Justification for the profile:
 - · Known issues, other estimation analyses, perceived risks

Adjusting the Model

 Incorporated feedback from the SMEs and any known estimate adjustments thus far, as well as the dollar value of risk exposure

- Performed sanity check:
 - Use COCOMO analysis to estimate software development effort/cost based on *estimated* software size
 - Ensure that the model "includes" the COCOMO output

Building the Model

USA Center for Experimental Software Engineering

Step 4: Consolidate Model Profiles

Center for Experimental Software Engineering

Center for Experimental Software Engineering

18

"Summing" the Models

- Used Monte Carlo simulations to "sum" the models
 - Repeatedly generated a random value following the defined distribution model
 - For each sampling, summed the generated value across all the distribution models
 - Created histograms of the sum generated from all the samplings
- Note: The number of iterations/samples can significantly affect the range of the model
 - We used 10,000 iterations/samples, and still observed some sensitivity in the produced models

Parting Thoughts

- We described our approach for generating costestimation probability distribution models
- Some lessons learned:
 - A WBS that makes key cost drivers "visible" makes it easier to "bucket" cost items in a manageable way.
 - Weibull is a flexible model, but may not be as popular as other models → lack of accessible statistical tool support for performing more sophisticated activities, such as model correlation.
- Program is still ongoing
 - The cost model have been vetted by a separate cost policy team
 - We are collecting the data now for the quantitative validation

List of Abbreviations

- CCR: Contractor Cost Report
- I&T: integration and Test
- IBR: Initial Baseline Review
- SME: Subject Matter Expertise
- VHDL: VHSIC (Very High Speed Integrated Circuit) Hardware Description Language

Questions?

Contact Information

Madeline Diep mdiep@fc-md.umd.edu 240-487-2937

Center for Experimental Software Engineering

Backup

Fraunhofer Center Maryland

- A not-for-profit *applied research* & technology transfer organization
- Mission: Advance real-world software practices via empirically validated research into softwareengineering technologies and processes

- Work closely with the customer to develop unique, *innovative* solutions within their business context
- Purveyor of *best practices* to organizations inside and outside of the software industry
- Affiliated with Fraunhofer-Gesellschaft in Germany and University of Maryland at College Park

Fraunhofer Center Maryland

Competences

- Security, reliability & safety analysis
- Software design & architecture analysis
- Software testing, verification & validation
- Technology evaluation
- Software product & process evaluation
- CMMI training & coaching
- Program, project, and risk management

Deep expertise in

- Goal-driven, measurement-based process and product improvement
- Software defect causal analysis and resolution
- Process improvement and best practices

