

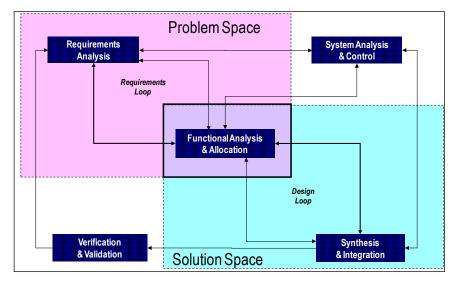
Boeing Defense, Space & Security Integrated Product Architecture

Boeing Defense, Space & Security | Integrated Product Architecture

Functional Architecture as the Core of Model-Based Systems Engineering

Ronald S. Carson, PhD Barbara J. Sheeley

The Boeing Company


Presented to National Defense Industrial Association Systems Engineering Conference, October 23-25, 2012

Outline

Boeing Defense, Space & Security | Integrated Product Architecture

- Introduction and motivation
- Role and benefits of functional architecture throughout the life cycle
 - From customer need statement to system architecture definition
 - Integration, Verification, Validation
 - Operations & Maintenance

Summary

Functional Architecture is at the intersection of the Engineering problem and solution spaces

Introduction and Motivation

Boeing Defense, Space & Security | Integrated Product Architecture

- SE is focused on system behavior (i.e., functionality)
- The requirements associated with the system mission are primarily associated functions and related performance.
- Derived system elements and interfaces must be shown to satisfy the requirements
- Integration is focused on the capability of the integrated system to perform system functions or mission threads
- Verification and Validation prove out "what it does"

Boeing is emphasizing *functionality* in *architecture*

What is a Functional Architecture?

Boeing Defense, Space & Security | Integrated Product Architecture

 "An arrangement of functions and their subfunctions and interfaces (internal and external) that defines the execution sequencing, conditions for control or data flow, and the performance requirements to satisfy the requirements baseline." (IEEE 1220-2005, 3.1.15)

Concepts

- Functions decomposable into subfunctions
- Interfaces
- Control flows (sequences and decision logic)
- Data flows (information exchanges)
- Associated requirements
- Satisfaction of requirements baseline

Elements of Systems Engineering Impacted by the Functional Architecture

Boeing Defense, Space & Security | Integrated Product Architecture

- From Customer Need to System Architecture Definition
 - Requirements Definition
 - Requirements Analysis
 - Fault Analysis
 - Trade Studies
 - Interface Derivation, Analysis & Control
 - Architecture Allocations
- IV&V
 - Planning and Procedures
 - Risk, Issue, Opportunity Management
- Operations & Maintenance Development
 - Operator Procedure Allocations
 - O&M Issues & Opportunity Management

Functional Architecture impacts all elements of system definition

Stakeholder Requirements Definition

Boeing Defense, Space & Security | Integrated Product Architecture

SE Process	Benefit from Availability of Functional Architecture	Consequences if Functional Architecture is Not Available					Source of Assessed of
Requirements Definition	Derive requirements from functional architecture and MOEs – operational analysis	Requirements not fully justified; no connection to concept of operations	Exec	utable	model	of op	erations
Requirements Definition	Clearly delineate operator task from system functions	Unclear human- machine interfaces, functional interaction. Duplicate work during Training development		ational Couts	∢ ≱ '		erational outputs or Operat output

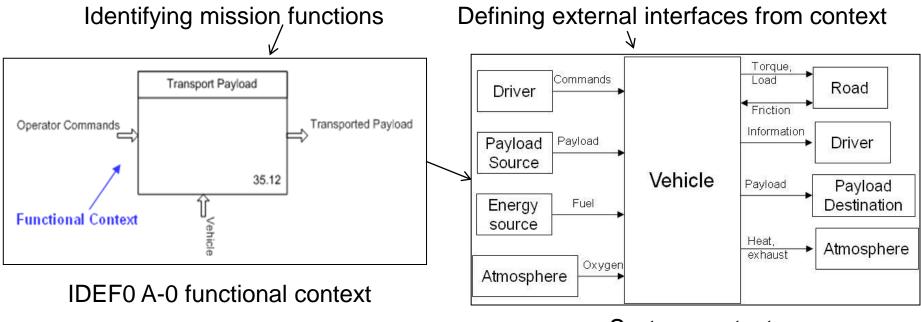
Decomposition of operational activity

Requirements Analysis

Boeing Defense, Space & Security | Integrated Product Architecture

SE Process	Benefit from Availability of Functional Architecture	Consequences if Functional Architecture is Not Available	Allocation Functional / Performance Requirement Allocation
Requirements Analysis	Identify all functional requirements (completeness)	Missing requirements	Element
Requirements Analysis / Architecture	Find inconsistent or missing allocations of functions to mechanisms	Gaps and conflicts in functionality; rework.	Finding missing functions, and allocations of functions to mechanisms
Requirements Analysis	Identify verbs in functional requirement	Functional requirements not justified	Functions Triggers Measures of Effectiveness MOE 1
Requirements Analysis	Identify states and modes as conditions of requirements	Required or Prohibited functions not identified	FUN 1.2 Trigger 1.2 MOE 11 FUN 1.2 Trigger 1.3 MOE 12 "Transmit" "message" "2 seconds latency" System Requirement System Requirement
Mode → Function ↓ Lift aircraft Propel aircraft	Required Required	Cruise Survey Required Allowed Required Allowed	Upon Repeipt ofthe device shalland_outputi - with Measure 1 - with Measure 2
Display objects Extend landing gear Retract landing gear	Prohibited Required I	Required Allowed	Defining verbs for functional requirements

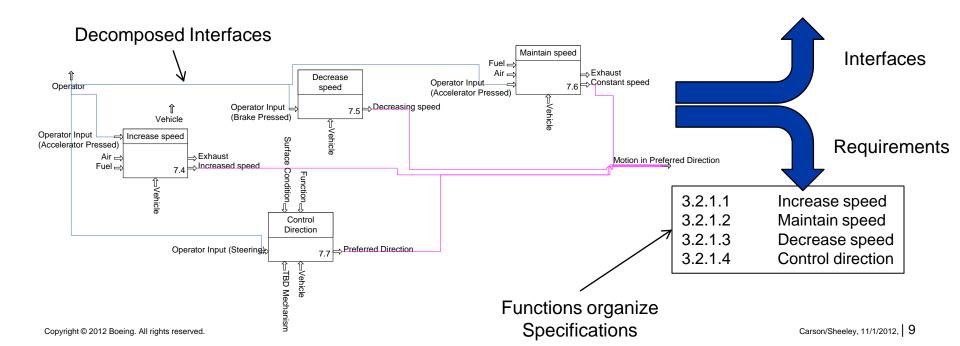
(after Piraino et al., 2001)


Carson/Sheeley, 11/1/2012, 7

Copyright © 2012 Boeing. All rights reserved.

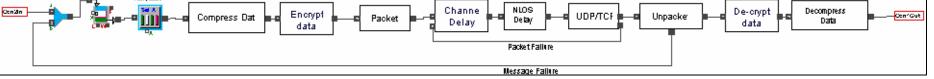
Requirements Analysis – Boundaries and Context

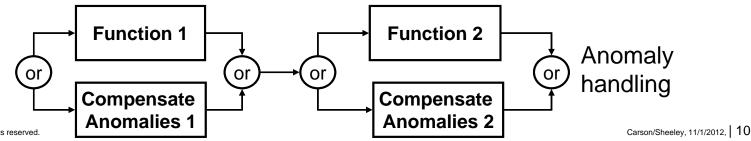
Boeing Defense, Space & Security | Integrated Product Architecture


SE Process	Benefit from Availability of Functional Architecture	Consequences if Functional Architecture is Not Available	
Requirements Analysis	Identify system boundary and external interfaces	Unclear or disputed boundary, context, and interfaces.	

System context

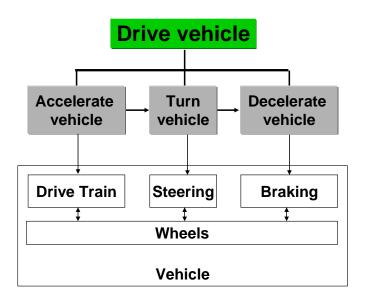
Requirements Analysis – Interfaces and Specifications

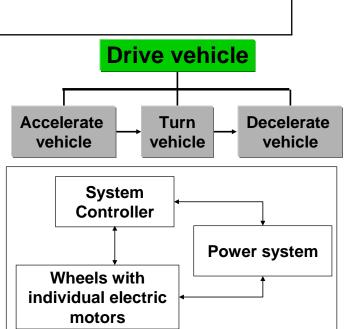

SE Process	Benefit from Availability of Functional Architecture	Consequences if Functional Architecture is Not Available
Requirements Analysis	Decompose interfaces earlier for individual requirements	Late discovery of interface details
Requirements Analysis	Organize specifications by operations from FA	Requirements not clearly connected to operations
	3.1.1.2 C	perator Command - Accelerator perator Command - Brake perator Command - Steer


Fault Analysis

Boeing Defense, Space & Security | Integrated Product Architecture

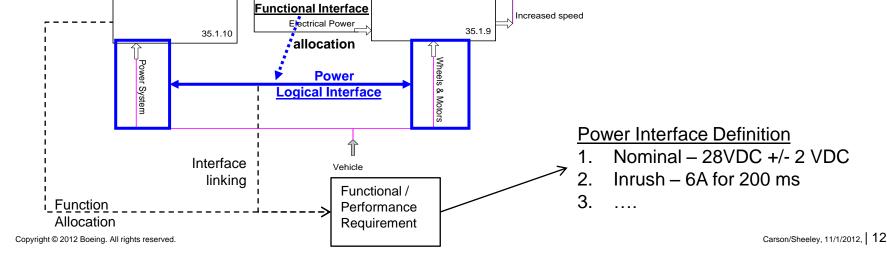
	Architecture	Available	
Requirements	Enable analysis of nominal and off-nominal	Failure to identify off-nominal conditions until	
Analysis	behavior	integration or later \rightarrow rework	
Requirements	Forder "Sechot if" anothering model have d forelt	Failure to identify incomplete or inconsistent	
Analysis I	Early "what if" analysis; model-based fault	requirements or architecture until integration or later \rightarrow	
Architecture	injection	rework	
I	Identify functionality hazards (unintended		
Architecture b	behavior) and response to failure (fault	Delayed discovery until integration \rightarrow rework	
Ċ	detection, isolation & recovery)		
Architecture	Executable – examine combinations of	FMEA (single failure) or Fault Tree (top down based on	
f f	failure conditions	end-effects and assumed contributions)	

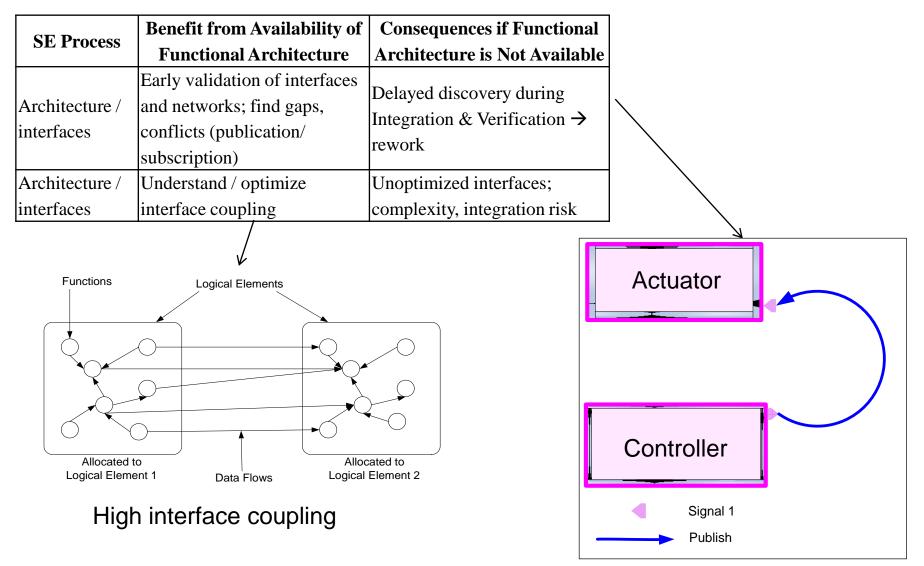

Executable model of communication channel for hazard and failure analyses



Copyright © 2012 Boeing. All rights reserved.

Trade Studies

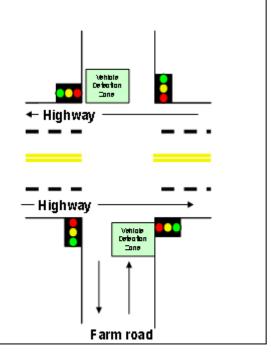

SE Process	Benefit from Availability of Functional Architecture	Consequences if Functional Architecture is Not Available
Trade studies (alternate architectures)	Optimize architecture vs. measures of effectiveness and suitability (cost effectiveness, design for value)	Unoptimized architectures – less value



Interface Derivation

SE Process	Benefit from Availa Functional Archit	v	Consequences if Functional Architecture is Not Available	
Architecture /	Derive logical interface fro	om functional	Gaps and conflicts in interfaces; rework	
interfaces	interfaces for different Me	chanisms	during IV&V	
A	Link interface definition to	o functional	ICDs disconnected from Requirements	
Architecture /	requirement; completeness of		(no link); duplicate work in IV&V	
interfaces	requirement		(multiple tests of interfaces).	
	IDEF0	Surface Condition		
eleration command	Electrical Power	Transmit positive torque	Increased speed	

Interface Analysis



Interface Control

Boeing Defense, Space & Security | Integrated Product Architecture

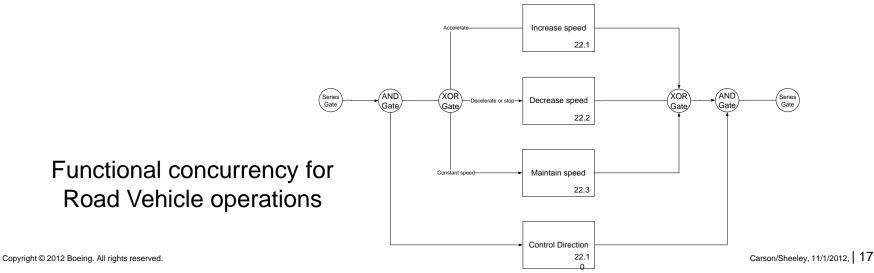
SE Process	Benefit from Availability of Functional Architecture	Consequences if Functional Architecture is Not Available
Architecture / interfaces	Publish I('I)s directly from	Manual generation or transcription; gaps and conflicts
Architecture / interfaces	Manage changes within model (CM) for all affected ICDs	Version inconsistency, publication lag.

Sensor Vehicle Detection Zone

Allocations

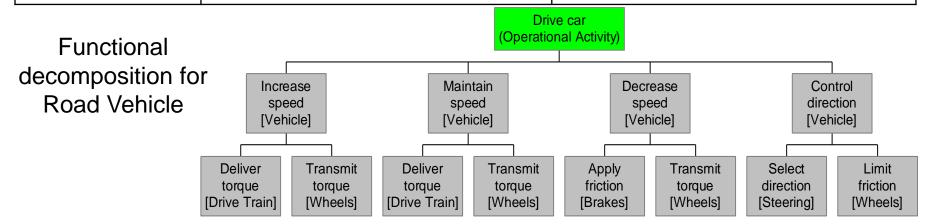
E Process	Benefit from Availability of Functional Architecture	Consequences if Functional Architecture is Not Available	Allocation Functional / Performance Requirement Allocat
rchitecture	behavior to logical	Unclear association of behavior to logical elements	Function Mechanism = Logical Element
rchitecture	Validate reliability allocations top-down; drive change before detailed design	Bottom up; must live with result or rearchitect/ redesign with high program impact.	Allocate functions to logical

		Function	Reliability
		Function(n)	R(Fn)
Function F1 with reliability RF1	Function F2 with reliability RF2	F1	0.99900
	,	F2	0.99800
		F3	0.99990
		F4	0.99000
Function F3 with reliability RF3	Function F4 with reliability RF4		
		Minimum R	0.986933
		=Product(R(Fn))


IV&V Planning and Procedures

Boeing Defense, Space & Security | Integrated Product Architecture

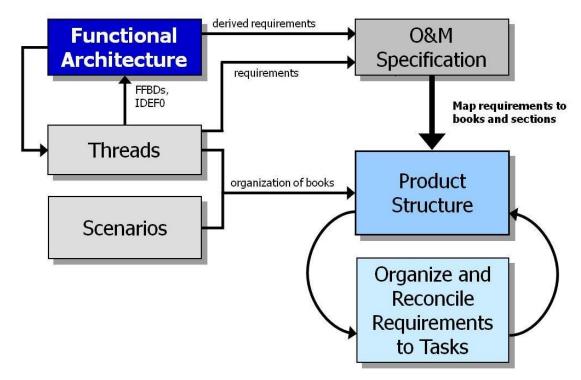
SE Process	Benefit from Availability of Functional Architecture	Consequences if Functional Architecture is Not Available
Implementation	Autogenerate solution from functional model	Build HW and SW from non-model artifacts, with possible gaps and conflicts.
Transition, Integration & Verification	Generate use cases for planning the incremental build-up and deployment of logical elements and associated infrastructure.	Non-optimized integration build-up plan. Ad hoc planning from rediscovered functional threads.
Transition, Integration & Verification	Generate use cases for procedures	Gaps in integration checks; ad hoc sequencing from requirements.
Verification	Analytical verification using model	Analytical verification from "scratch" or testing, with higher costs
+\$ -\$ Tes	Farm Road Traffic Light Amber 1 1.1.2.7.8 2 2 3 6 6 4 7 7	Light Red 1 1.1.2.7.9 2 1 6 5 6 5 1 1.1.2.7.9 1 Initiate Display Red Light 5 5 6 5 1 1 1 1.1.2.7.9 1 1 1.1.2.7.9 1 1 1.1.2.7.9 1 1 1.1.2.7.9 1 1 1.1.2.7.9 1 1 1.1.2.7.9 1 1 1 1.1.2.7.9 1 1 1 1.1.2.7.9 1 1 1 1.1.2.7.9 1 1 1 1 1.1.2.7.9 1 1 1 1 1.1.2.7.9 1 1 1 1 1.1.2.7.9 1 1 1 1 1 1.1.2.7.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Relative program cos Verification with (soli (dotted) functional in	sts throughSequenced) and withoutfor Traffic Light	8 1 1 1 1 1 1 1 1 1 1 1 1 1
Copyright © 2012 Boeing. All rights reserved.	ogiation. Oyotom	Traffic Light System


IV&V Risk Management

SE Process	Benefit from Availability of Functional	Consequences if Functional
	Architecture	Architecture is Not Available
Integration and	Confirming expected behavior	Discovering actual behavior; rework for
Verification	Confirming expected behavior.	the unexpected.
Integration and Verification	Clear association of interfaces to functionality; effects of interface discrepancies can be quickly assessed for functional impact.	Cannot easily determine functional impact of interface discrepancies.
Integration and Verification	Identify areas of integration risk due to concurrent functionality, critical timing relationships, and required ("must do") or prohibited ("must not do") state or mode dependencies	Delayed discovery until integration with rework, cost, schedule increase

IV&V Issue Management

SE Process	Benefit from Availability of Functional	Consequences if Functional Architecture is
SE Process	Architecture	Not Available
Integration and Verification	Aid replanning when logical elements not available	"Down time" waiting for equipment, or uncertain use of incomplete systems (unclear whether functions will work).
Verification	Provide information for functional/ performance reallocation for any deficiencies during Verification	Limited choices (deviation or fix design); more ad hoc brainstorming for reallocation.
Verification	Anomaly resolution root cause substantiated by model; enable accepting "as is" as low- probability event	Fix anomaly based on symptoms.
Validation	Validate capability to satisfy user needs ahead of operational test & evaluation (OT&E)	Discover deficiencies during OT&E


IV&V Opportunity Management

SE Process	Benefit from Availability of Functional	Consequences if Functional Architecture
SE HICCSS	Architecture	is Not Available
Validation	Ability to predict additional capabilities by	Require testing to discover additional
	analysis, ahead of operational evaluation	capabilities.

Operations & Maintenance Allocations

SE Process	Benefit from Availability of Functional Architecture	Consequences if Functional Architecture is Not Available
Operations & Maintenance	Define operator procedures from architecture (functional sequences of items allocated to "operator" or "maintainer")	Manually generate procedures based on system requirements, description and interfaces; resolve gaps and conflicts with designers

Operations & Maintenance Issues & Opportunities

SE Process	Benefit from Availability of Functional Architecture	Consequences if Functional Architecture is Not Available
Operations & Maintenance	Analyze operational problems (simulation) using functional model to identify root cause and validate solutions.	Use system hardware and software to determine root cause and validate solutions.
Operations & Maintenance	Identify revised or new functionality allocations for (diminished manufacturing sources) DMS or technology insertion. Includes COTS refresh.	After-the-fact identification of gaps and conflicts in functions, interfaces, performance for DMS changes, technology insertion, and COTS refresh.
Operations & Maintenance	Enable product line management with clear identification of gaps in new capabilities	Manage related systems in isolation with extra cost and configuration management challenges

Summary & Conclusions

Boeing Defense, Space & Security | Integrated Product Architecture

SE Process	Benefit – Why do it?
Requirements Definition	Provides clear relationship of requirements to needs and operations
Requirements Analysis	Enables complete and consistent requirements, boundaries, interfaces, specifications, allocations
Trade Studies	Exposes hidden trade space; enables optimizing architectures for value
Fault management	Earlier analysis of functional failures and fault management
Architecture and Interfaces	Clear requirements allocations; consistent interface definition and management
IV&V Planning	Deployment and integration planning and procedures derived from functional allocations and use cases
IV&V ExecutionAllows functional or interface impact of requirement non-compliance to analyzed	
Operations & Maintenance	Define operational procedures from architecture; analyze opportunities; resolve issues

Focusing on functional architecture yields benefits throughout the life cycle