
Agile Software Development in Defense

Acquisition – A Mission Assurance Perspective

Dr. Peter Hantos

The Aerospace Corporation

© The Aerospace Corporation 2012

NDIA 15th Annual Systems Engineering Conference, San Diego, California

October 22, 2012

Acknowledgements

• This work would not have been possible without the support of the

following people of The Aerospace Corporation
– Asya Campbell

– Suellen Eslinger

– B. Zane Faught

– William S. Macaulay

• Special thanks
– Steven Kropp, Florida Department of Economic Opportunity, Labor Market

Statistics Center

• Funding Source

• The Aerospace Corporation’s Aerospace Technical Investment Program

(ATIP,) Software Acquisition Long Term Capability Development (LTCD)

Project

2

Outline

• Background and Motivation

• Objectives

• Agile Software Development – The 64,000-foot View

• Still Flying High – Context and Building Blocks

• Fasten Your Seat-belt and Prepare for Landing

– The Life Cycle Perspective of Agile Software Development

– Agile Software Development Values

– eXtreme Programming (XP)

• The State-of-Affairs - Agile Software Development in the Commercial,

Market-Driven World

• Is Agility Really the Answer to Fix the Broken Acquisition System?

• Conclusions

• Acronyms

• References

• Backup

3

Background

• Emergence of new buzzwords in software development

– Competitive pressures of the 1990s forced software companies to reexamine

their development processes and adopt radical approaches. As a result, the

industry has been flooded with buzzwords like “internet time,” “extreme,” and

“agile,” just to mention a few

• Management buzzwords have been flooding over the past 30 years…

– There has been a “bandwagon effect” of popular management movements

such as total quality management (TQM,) management by objectives,

reinventing government, reengineering, the balanced scorecard, lean, and

Six Sigma®. However,

• companies that claimed excellence on the basis of these practices later

turned out to be mediocre or outright failure [Paparone 2009]

– Consequently, a relatively recent, interesting recommendation to the

Pentagon brass: “Stay away from management bestsellers…” [Erwin 2009]

4

* Six Sigma has been registered in the U.S. Patent and Trademark Office by Motorola

Motivation

• History notwithstanding…

– Agility seems to be a simple concept

– It is commonly perceived as a virtue

– Agile methods are making inroads into software development

• Despite of Ms. Erwin’s advice, Pentagon brass does not seem to be

able to stay away from management bestsellers after all ☺

• Consequently, the idea of bringing agile concepts into defense

acquisition requires a closer look

5

Objectives

• Attendees will be able to

– Name popular agile software development methods

– Describe representative agile software development practices

– Compare agile and traditional development methods

– Assess the appropriateness of an organization’s software development

practices

– Appreciate the spirit and usefulness of mission assurance in carrying out the

evaluations of the defense contractors’ software development practices

– Differentiate between agility in acquisition and agility in development

6

Agile Software Development - The 64,000-foot View

What is Agility?

• The narrow, dictionary definition [Collins 2012]:

– Quick in movement; nimble

• Agility implies both the capacity and capability to act immediately
– Agility is perceived a virtue

– In business, agility is considered an important organizational capability

• Unfortunately, in most contexts it is ill-defined or inconsistent

– Agility does not simply equate with speed, as the following examples show

• Agility may conflict with speed

– The Titanic’s ability to turn sharply is far more likely to avert disaster

than increasing its top speed charging straight ahead

• Agility requires speed but also requires balance

– E.g., in martial arts

– “Lean” does not always equate with “agile”

• E.g., applying lean concepts might increase the rigidity of a process

– This rigidity results from constraining the process in order to optimize

the case “right now”

Agility is like the Elixir of Life or the Fountain of Youth – Mysterious and Elusive
~ Anonymous

8

Agility in Defense

• The warfighter perspective
– There is a confusion about the need for systems enabling war-fighter

agility vs. the need for agile acquisition of weapon systems

• No argument about the value of war-fighter agility. However,

– War-fighter agility can be primarily supported via weapons

design and flexible architecture

– Faster access to new weapons is not always the right solution

– The trade-off between faster access and features is promoted,

but the underlying, hidden quality concessions are always

controversial and the associated decisions are very difficult

• The acquisition perspective
– There are essential concerns that need to be clarified and answered

• To what extent would agile software development contribute to

the achievement of agile acquisition of weapon systems?

• How is fast procurement different from agile acquisition?

• Under what circumstances is agile software development

acceptable or even desirable for weapon systems acquisition?

For operational responsiveness we need “agile products” and not “agile processes”

9

(Our) Definition of Agile Software Development

• Agile software development methods employ practices that are

consistent with the Agile Manifesto’s value statements and principles

– There are numerous, “brand-name” methods that are considered agile*

– However, “new” approaches are published almost every day that are mostly

mix-and-match medleys of existing practices

• History of the Agile Manifesto**

– Created on February 11-13, 2001 at the first meeting of agile proponents,

the 17 founding members of the Agile Alliance

• Agile values:

– “We are uncovering better ways of developing software by doing it and

helping others doing it. Through this work we have to come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan.”

10

* See the backup charts; ** For the complete text see [Agile 2001]

Still Flying High – Context and Building Blocks

Defense Acquisition (The Big “A” Acquisition Process…)

12

Legend:

DOD Department of Defense
JCIDS Joint Capabilities Integration & Development System
JROC Joint Requirements Oversight Council
OSD Office of the Secretary of Defense
PPBE Planning, Programming, Budgeting & Execution
R Performance & “Time to Need” Requirements
$ Allocated Funding

Threats Combatant
Commands

JROC
(DOD & Services)

OSD,
White House
(Executive Branch)

Oversight
Organizations

(Acquisition Workforce)

R

R

$

Allied

Capabilities

JCIDS

PPBE

DOD 5000.02

Congress
(Legislative Branch)

Weapon

SystemsManagement

Hardware
Development

Contractor
R

$

$

Software
Development

Determines required

capabilities

(“Requirements”)

Provides

funding

Controls

implementation,

flow of funding

Agile Software Development in Defense Acquisition

13

Legend:

DOD Department of Defense
JCIDS Joint Capabilities Integration & Development System
JROC Joint Requirements Oversight Council
OSD Office of the Secretary of Defense
PPBE Planning, Programming, Budgeting & Execution
R Performance & “Time to Need” Requirements
$ Allocated Funding

Threats Combatant
Commands

JROC
(DOD & Services)

OSD,
White House
(Executive Branch)

R

R

$

Allied

Capabilities

JCIDS

PPBE

DOD 5000.02

Congress
(Legislative Branch)

Weapon

Systems

Oversight
Organizations

(Acquisition Workforce)

Management

Hardware
Development

R

$

$

Contractor

Software

Development

Agile

Software

Development

Practices

Agile software development affects only a small fragment of the acquisition system

Key Stakeholders in the Big “A” Acquisition Process

14

Legend:

DOD Department of Defense
JCIDS Joint Capabilities Integration & Development System
JROC Joint Requirements Oversight Council
OSD Office of the Secretary of Defense
PPBE Planning, Programming, Budgeting & Execution
R Performance & “Time to Need” Requirements
$ Allocated Funding

Threats Combatant
Commands

JROC
(DOD & Services)

OSD,
White House
(Executive Branch)

Oversight
Organizations

(Acquisition Workforce)

R

R

$

Allied

Capabilities

JCIDS

PPBE

DOD 5000.02

Congress
(Legislative Branch)

Weapon

Systems
Management

Hardware
Development

Contractor
R

$

$

Software
Development

Actual

User

Developer

Surrogate User,

Surrogate Customer

Surrogate

User

Surrogate

Customer

Actual

Customer

Note how removed development is from the actual user and customer

* APO is a generic term; program offices are called differently in different services

Acquisition is a Contact Sport…

15

The fundamental source of tension is which stakeholder will bear the risk

• Due to different motivation and behavior, there is a

 tension between
– Stakeholders of the Acquisition System, e.g., Congress, DoD, etc.
– Stakeholders of the Oversight Organizations, e.g., Acquisition Program

Offices (APOs*) and the Development Organizations (Contractors)
– Stakeholders of the Development Organizations themselves

• Management vs. developers
• Hardware developers vs. software developers

• Some hard facts to face

– Typically the conflicts are not between equals

– Different stakeholders have different political weight and capabilities, hence

in most cases “win-win” solutions are either not feasible or not pursued

• New valuation considerations for agile software development practices

– Potential impact on existing tensions in the overall acquisition system

– Loyalty factor, i.e., whose interest should be acknowledged as the most

important in a particular context

The Risk Pendulum – Who is Going to Bear the Risks?

16

The interesting paradox is that despite higher customer control - which, perceived to drive

down risk - cost-based and time-based patterns are still risky…

Basic Funding Patterns* Cost-based Time-based Fixed Price

Promise Best effort Best effort Shall deliver

Cash flow As incurred As incurred On delivery of item

Customer control Maximal Maximal Minimal

Risk to contractor or developer Low Low High

Risk to customer or management High High Low

Customer or

management

Contractor or

developer

The Risk Pendulum

* Note that these patterns have their formal,

 contracting equivalents and variations in

 the Federal Acquisition Regulation (FAR)

Mission Assurance Definitions*

• Mission Success

– The achievement by an acquired system (or system of systems) to singularly

or in combination meet not only specified performance requirements but also

expectations of users and operators in terms of safety, operability, suitability,

and supportability

– Mission success is evaluated after operational turnover, according to

program-specific timelines and criteria

• Mission Assurance

– The disciplined application of general systems engineering, quality, and

management principles towards the goal of achieving Mission Success, and

towards this goal, this disciplined application provides confidence in its

achievement

17
* Source: [Guarro 2007]

Mission Assurance is Development Process-neutral

• Software Mission Assurance does not assume any particular software

development methodology, programming language, or tools

• Mission Assurance is the responsibility of the APO, a defense

acquisition oversight organization

– Air Force APO’s enjoy direct help from multiple entities, such as

• Federally Founded Research and Development Centers (FFRDCs)

• Systems Engineering and Technical Assistance (SETA) contractors

• Systems Engineering & Integration (SE&I) contractors

• The APO’s Mission Assurance activities do not assume the presence of

any similar, or similarly named (i.e., “Mission Assurance”) effort from the

contractor

– If such effort exists then, from the APO’s perspective, it needs to be treated

as integral part of the contractor’s development process

18

Software Mission Assurance tasks are inherently essential for the

assurance of any software development endeavor in defense acquisition

The Main Exposure to Mission Success: Software Defects*

• Definition of a software defect
– Any software attribute or characteristic that represents a deviation from

specified attributes or characteristics
– Software defects can cause unanticipated cost and schedule overruns and in

operational systems performance deficiencies

• Definition of a software fault
– A software fault is a software defect that can result in a significant system

function failure during the execution of the code

• Hardware-induced vs. software-induced failures
– Hardware-induced failures

• Software always depends on hardware; certain hardware defects might
manifest themselves as software defects (e.g., a Single Event Upset
(SEU) in the on-board computer’s memory or registers as a result of
naturally occurring cosmic rays, trapped protons and solar energetic
particles)

– Software-induced failures
• Majority of such failures are rooted in software design or specification

flaws; Essentially the system enters into an unanticipated and/or poorly
understood operational regime

19

* Definitions courtesy of Myron Hecht [Guarro 2008]

Software-induced Failure* Types

• Deterministic vs. random failures
– Deterministic (“Bohrbugs”)

• Repeatable
• Traceable to root cause(s) under control of developer or user

– Deterministic failures can be prevented through the use of a
disciplined development process

– Random (“Heisenbugs”)
• Not repeatable; many such failures can be fixed by reset
• Caused by transient states of the software (timing, buffer overflows,

queues, memory leaks, etc.)
• Indistinguishable from single event upsets (SEUs,) power fluctuations or

hardware timing errors

• Recoverable vs. non-recoverable software failures (space example)

– Recoverable software failures are events that occur in spacecraft processors
that cause a loss or performance degradation of the bus or payload, which
can be restored via either onboard or ground corrective actions

20
* For sake of simplicity they will be referenced as software failures

Application of a disciplined development process itself is not a guarantee

for preventing random failures or mitigating recoverable failures

Preventing Random Software Failures

• The following approach is recommended*

– Collect software failure data during integration testing

• Use relevant operational profiles, not just requirements, to define test plans

• Record software operating time

• Record all failure events

• Collect recovery time and data to determine the probability of recovery

– Select an appropriate software reliability model

• This model will be used to extrapolate behavior from test data

– Evaluate parameters

• Software behavior must be analyzed and validated via formal, systematic

means that take into account a variety of nominal and off-nominal

operational scenarios

– Integrate findings into a system stochastic or reliability model

21

Most likely the contractors use similar approaches; verifying the

correctness of the contractors’ analyses is a critical mission assurance task

* Source: [Guarro 2008]

Well, the high-altitude cruising is over…

Fasten your seat-belt and prepare for

 landing!

23

The Life Cycle Perspective of Agile Software Development

Agile Process Example: Scrum*

24

Product Backlog Backlog Tasks New Functionality

24-hour

Cycle

30-day

Cycle

Daily

Scrum
Meeting

Monthly

Sprint
Meeting

* The process was first formalized by Ken Schwaber [Schwaber 95]

• Scrum is a lean approach to software development

– Simple “inspect and adapt” management framework, using time-boxing

– Based on the scrum metaphor for new product development [Takeuchi 1986]

– No declared, method-specific development practices

– “Backlog” is a metaphor for requirements

In Contrast, an Iterative-Incremental Process, IBM/RUP

25

* [Jacobson 1999]; Renamed to IBM/RUP after the acquisition of Rational Corp. by IBM

• The Rational Unified Process (RUP) is a comprehensive process model*

– Workflows are essentially life cycle processes with detailed description

– The process encompasses modern development principles [Royce 1998]

After We Remove the Fluff (i.e., the Metaphors…)

26

… …

Iterative-Incremental Development (IID)

Content (Requirements) Driven

Factors to be compared IID Time-box

Iteration/Increment duration varying set

Iteration content in the context of an increment Planned up-front Not planned up-front

Difficulty of iteration planning moderate easy

Difficulty of increment planning difficult difficult

Micro-estimation fidelity moderate higher than IID

Macro-estimation fidelity high low

Naturally fitting contracting pattern cost-based time-based

… …

Time-box (“Agile”)

Calendar (“Clock”) Driven

Red flag marks the customers’ primary concerns

Main Time-box Risk: Violating the Iron Triangle Principle

• What is the Iron Triangle Principle?

– One can only fix two of the cost, requirements, and schedule triad; any

attempt to pre-determine all three results in an non-executable plan

• (Unfortunately) typical scenario: the number of time-boxes, like sprints in

Scrum, and ultimately the launch-date are pre-determined
– At that point cost (i.e., manpower loading,) is also pre-determined

• Risks:
– No guarantees that all desired requirements can be fully implemented;

 In fact, the adaptive process will successively defer and drop requirements

27

Requirements

Schedule Cost

Main Time-box Risk: Violating the Iron Triangle Principle

• What is the Iron Triangle Principle?

– One can only fix two of the cost, requirements, and schedule triad; any

attempt to pre-determine all three results in an non-executable plan

• (Unfortunately) typical scenario: the number of time-boxes, like sprints in

Scrum, and ultimately the launch-date are pre-determined
– At that point cost (i.e., manpower loading,) is also pre-determined

• Risks:
– No guarantees that all desired requirements can be fully implemented;

 In fact, the adaptive process will successively defer and drop requirements

– Since the process is already over-constrained, delivering predictable

 quality is also a challenge

28

Requirements

Schedule Cost

Quality

29

Agile Software Development Values

Examining Agile Software Development Values

• Agile software development values revisited

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

• During the analysis the following, typical figures were considered

– Space vehicle (embedded, large, including bus software and payload(s)):

• ~512 Thousand Delivered Source Instructions (KDSI)

– Ground systems:

• Space Shuttle software ~2,000 KDSI

• Satellite control systems software ~4,700 KDSI

– The development of 512 KDSI would require roughly a 6,420 person-month

effort, spreading over 41 months, involving ~157 full-time equivalent

software personnel

30

Individuals and Interactions Over Processes and Tools

• Let’s focus on processes first

– Agile proponents believe that one should only declare and rely on practices

instead of processes to increase the agility of software development

• A practice usually refers to an individual activity while a process is an

aggregate structure of multiple activities

– Relying only on practices certainly ensures a greater level of flexibility,

however

• This flexibility comes with unavoidable ambiguities and may create

tension amongst the stakeholders

– Consider the example’s 157 developers working shoulder-to-shoulder

– Consider the problems of concurrent hardware-software development

– In pursuing mission success we found that even the use of so-called mature

processes, such as defined by the CMMI®, proved to be inadequate

31

® CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University

The government must make a robust software standard contractually compliant

 [Eslinger 2006]

Lean

• The term “lean production” was coined in the 80’s [Krafcik 1988]
– The underlying ideas represent the so-called lean thinking about processes

• Current (mis)use of the term
– Lean is a popular buzz-word for general cost cutting efforts

– Lean may be used in conjunction with Six Sigma®, another, also

manufacturing-rooted, process improvement method (“Lean Six Sigma”)

• Unfortunately, this term is misleading: “lean” does not mean applying lean

thinking to Six Sigma but using Six Sigma tools to carry out lean practices

• Key principles of lean systems thinking [Rule 2011]
– Understand value from the stakeholders’ perspective
– Identify all steps in the value stream
– Enable value to flow smoothly
– Respond to the pull of stakeholder demand
– Continuously seek perfection

• Mission assurance exposure
– Difficult to sort out what is really important due to stakeholder conflicts
– Lean Six Sigma rule of thumb is that usually only 5% of total process cycle

time adds value to outputs; mission assurance is valued low by developers

32

® Six Sigma is registered in the U.S. Patent and Trademark Office by Motorola

Major Areas in a Typical Software Development Standard*

33

System and Software Architecture

Human Systems Integration

Interoperability and Standardization

Reliability, Safety, Information

Assurance

Project Planning and Oversight

SW Development Environment

System Requirements Analysis

SW Requirements Analysis

SW Design

SW Implementation and Unit Testing

Unit Integration and Testing

SW Qualification Testing

Transition to Operations and

Maintenance

Software Configuration Management

SW Peer Review/Product Evaluation

SW Quality Assurance

Corrective Action

Joint Technical and Management

Reviews

Risk Management

SW Management Indicators (Metrics)

Security and Privacy

Subcontractor Management

Interface with Software IV&V Agents

* Source: [Adams 2005]

The “lean” question: Which ones do not add value? Which ones to get rid off?

Sign in my dentist’s office:

“Brush only those teeth you wish to keep…”

What Does My Dentist Know About Mission Assurance?

34

Individuals and Interactions Over Processes and Tools-2

• Tools

– The typical 3-4 year long development and a minimum 5-10 year long

operation and sustainment for a space vehicle require strong tools support

• Development must be based on an architecture-first approach

– Architecture modeling artifacts need to be documented with rigorous

notation and handled with appropriate (preferably visual) modeling

tools

– The dynamics of concurrent workflows by different teams working on

shared artifacts necessitates a rigorously controlled change

management environment

• Tools are also necessary to keep all the engineering information in

different formats synchronized and to support bi-directional traceability

– System requirements, software specifications, design models, source

code, executable code, scripts, test cases, test data, etc.

• True change freedom cannot be realistically achieved without the

support of an appropriate, integrated environment [Royce 1998]

35

Even in a stable labor force tacit knowledge sharing is not sufficient

Periods of

Recession**

Information Sector Federal Sector

Hires Separations Hires Separations

2001-2002 36.5% 43.3% 19.75% 19.4%

2008-2010 23.7% 27.8% 22.13% 21.0%

• The work force in the information sector is very volatile* even during

recessions when the overall, net employment change is lower than average

• How to interpret the data
– Unfortunately, the Bureau of Labor and Statistics (BLS) is not collecting the

exact data we would be interested, i.e., programming-related turnover in the

defense industry

– However, one can see that the turnover rate is quite high even in the federal

sector, which is considered less volatile than the private sectors

– Additionally, the BLS database does not track internal, company turnover

Work Force Volatility

36
* Source: Bureau of Labor and Statistics database; ** [Bruyere 2011]

Insisting on tacit knowledge sharing is inappropriate

in case of such a volatile work force

Working Software Over Comprehensive Documentation

• Agile proponents essentially do not dispute that documentation plays an

important role in software development [Ambler 2011]
– Author makes a point from an agile perspective that customers must

understand the total cost of ownership (TCO) for a document, and they must

explicitly decide to invest in that document

– This a good advice under any circumstances, of course

• However, this value statement is about interim progress assessment
– The idea is not new; modern processes are already using the demonstration-

based approach to assess intermediate artifacts [Royce 1998]

• The concern regarding the agile approach is the impact on the customer
– Principle #8 of the Agile Manifesto represents a strong imposition on the

customer: “Sponsors, developers, and users maintain a constant pace”.

Unfortunately, maintaining such pace is not feasible on large projects

– Issues:

• Embedding users/customers with the necessary expertise into every team

• Users/customers need to approve technical decisions in the short cycles

• Coordination of an extensive network of user/customer representatives

37

In short, this agile value does not scale up in a large project

Customer Collaboration Over Contract Negotiation

• As it was shown, actual users and customers are far removed from the

development organization
– JROC, DOD, and Congress are high-inertia organizations with complex,

bureaucratic processes for interaction

– These are stakeholders with different political weights; building true

collaborative relationships is difficult if not impossible

• With the current, rigid “upstream” relationship the flexibility of the

surrogate customer is very limited
– Agile development will not improve the agility of the acquisition process; in

fact, insisting on developer agility may exacerbate the existing tensions

• It is an unfortunate fact of life that when things do not go well,

collaborative resolution becomes less and less feasible
– The stakeholders have their own, different risk perspectives and motivations

and their differences cannot be easily reconciled via voluntary actions

• You would not remodel your kitchen without a detailed contract, so why

would you deemphasize the importance of contracts for billion-dollar

weapon system acquisitions?
– Well, actually we did it in the 1990s, it was called “Acquisition Reform”

38

Responding to Change Over Following a Plan

• The essential motivation is the recognition that solution details to complex

problems cannot be successfully determined up-front
– This is not a new idea; that’s why modern, but pre-agile software development

methods are adaptive and use iterative/incremental processes. How

requirements risks are handled in modern methods:

• On micro-level: The emphasis during the planning of iterations is on

facilitating a successively refined understanding of requirements

• On macro-level: New or changing requirements are expected to be handled

via evolutionary acquisition and development strategies

• Agile principle #2 (“Welcoming changing requirements”) is directly

flowing from the discussed agile value statement
– Unfortunately, this is a disingenuous statement, to say the least

• In reality, everybody likes to work on stable grounds with clear, unchanging

expectations; Don’t you?

• However, if anyone still has doubts, listen to Yogi Berra:

39

“If you don't know where you are going, you will

wind up somewhere else”

Beyond Unavoidable Requirements Volatility

• Even though Yogi Berra was right, a certain level of requirements volatility

is unavoidable

– Consequently, whatever process is used, some level of flexibility is needed to

deal with such volatility

• However, lack of control may still lead to the erosion of process discipline

– "Just because you have a detailed requirements specification that has been

reviewed and signed off, that doesn't mean that the development team will

read it, or if they do, that they will understand it, or if they do, that they will

choose to work to the specification." ~~~ Scott W. Ambler [Ambler 2007]

40

Only diligent mission assurance can prevent this from happening

41

eXtreme Programming

eXtreme Programming (XP)*

• What is eXtreme Programming?
– XP is a light-weight, low-ceremony software development methodology

• Based on Kent Beck’s early experiences at Daimler Chrysler Corporation

• Why is it Extreme?
– Does not involve bungee cords; no relationship to Windows XP either… ☺

– XP adopts well-known software development practices and attempts to take

them to their logical extremes

• Example: The “You Aren’t Gonna Need It” (YAGNI) Concept

– YAGNI is a general refrain when someone suggests building

functionality for the system that is not present in the current

requirements set. The assumption is that it can be added later if it

becomes necessary

– YAGNI supposed to be the opposite of “Big Design Up-Front” BDUF

– However, remember the importance of diligent, strategic architecting

and design we described earlier to prevent random software failures

42
* Source: [Beck 2000]

BDUF might have its problems, but from a mission assurance perspective

we need at least a balanced approach; “extreme” is not really desirable

XP Practices (Practice Details in the Backup Section)

43

Original Practices in 2000 Mission Assurance Exposure

Planning game, on-site customer Burdensome customer participation

Small releases Implied customer responsibility for validation

Metaphor None

Simple design Rigid use of the YAGNI principle

Continuous integration & testing Implied customer responsibility for success

Refactoring Practice is not a replacement for proper architecting

Pair Programming Practice is not a replacement for formal inspections

Collective code ownership Practice does not scale up

40-hour work week None

Coding standards None

Practice Changes in 2004* # of Practices

No change 2

Eliminated or deemphasized 4

Renamed or changed 2

New practice introduced 11

* [Beck 2004]

Mission Assurance Consequences

44

• A reviewer’s opinion about the 2nd edition of Beck’s book:
– “… the 2nd edition describes a new process that is different from the process

Beck describes in the first book. It seems, he has invented a new process

(based on his experience with XP) and gave it the same name”*

• The importance of process documentation and use of standards
– XP is a good example of how fluid the agile field still is and how difficult

it is to pin-down specific practices

– High-quality, detailed process documentation is needed to mitigate up-front

agile process ambiguities; carrying out the oversight function is very difficult

without documented, agreed upon terminology and processes

– The customer must understand that (s)he will only get what (s)he explicitly

asks for; after the contract is signed, the customer is at the mercy of the

contractors and will be separately charged for every request that is deemed

to be “new”

– For a more detailed analysis see the earlier mentioned report [Eslinger 2006]

* Source: [Stansell 2004]

Use of standards is one of the most effective tools for the

customer to go on record with process-related expectations

The State-of-Affairs - Agile Software Development

in the Commercial, Market-Driven World

Top 12 Reasons Named in 2010 for Adopting Agile*

• Accelerate time to market

• Enhance ability to manage changing priorities

• Increase productivity

• Enhance software quality

• Improve alignment between information technology (IT) and business

objectives

• Improve project visibility

• Reduce risk

• Simplify development process

• Enhance software maintainability and extensibility

• Improved team morale

• Reduce cost

• Improve and increase engineering discipline

46
* [VersionOne 2010]

Some of these expectations are clearly counter-intuitive, showing

a lack of true understanding of these methodologies

Top 12 Concerns in 2010 About Adopting Agile*

• Loss of management control

• Lack of upfront planning

• Management opposed to change

• Lack of documentation

• Lack of predictability

• Lack of engineering discipline

• Development team opposed to change

• [Lack of] engineering talent

• Inability to scale

• Regulatory compliance

• Reduced software quality

• Other

47
* [VersionOne 2010]

It is not on the list, but one of the main concerns should be lack of

consistent metrics and reliable data to verify if any of the objectives

stated on the previous slide have been met

Agile Software Development from a Commercial

Perspective

• Using agile software development is a business strategy, based on a

particular value proposition

• Choosing a development method should be based on the home grounds

of the organization and project, characterized by the following factors*
– Project size (Expressed by the number of development personnel involved)

– Criticality (Loss due to impact of defects)

– Level of software understanding in development personnel

– Dynamism (%Requirements-change/month)

– Culture (Thriving on chaos vs. preferring order)

• When these factors are considered, agile software development

certainly seems to be a promising approach for small, low criticality

projects with rapidly changing requirements, where the

organization’s culture embraces high degrees of freedom, and the

developers are highly experienced

48
* [Boehm 2004]

Unfortunately, the applicability of these methods outside of

the above described home ground has not yet been proven

The Agile Manifesto Principles – the “New” Way of

Developing Software

 (1) Early and continuous delivery to satisfy customers

 (2) Welcoming changing requirements

 (3) Delivering working software frequently

 (4) Close collaboration with business people

 (5) Motivation of developers through trust

 (6) Using face-to-face conversations to convey information

 (7) Working software is the primary measure of progress

 (8) Sponsors, developers, and users maintain a constant pace

 (9) Continuous attention to good design

(10) Simplicity, maximizing the amount of work not done

(11) The best work is always expected from self-organizing teams

(12) Team reflection and behavior adjustment at regular intervals

49

The “Old”(?) Way - Principles of Software Management*

 (1) Architecture-first approach

 (2) Iterative life-cycle process

 (3) Component-based development

 (4) Establish a change management environment

 (5) Enhance change freedom through tools that support round-trip engineering

 (6) Rigorous, model-based notation

 (7) Objective quality control

 (8) Demonstration-based approach to assess intermediate artifacts

 (9) Intermediate releases with evolving levels of detail

50

* Source: [Royce 1998]

Do #2, #8, and #9 ring any bells?

There is No Silver Bullet – Particularly in Software

Engineering! 

51
* [Brooks 1987]

Everybody quotes Fred Brooks* but still, we keep trying to make one…

Is Agility Really the Answer to Fix the Broken

Acquisition System?

• Defense Acquisition Performance Assessment (DAPA) summary in 2006
– “As early as 1971 it has been identified that [defense] acquisition processes

have significant shortcomings leading to loss of confidence by congress and
the defense community”

– “Many improvements to the DOD’s acquisition system have been made as a
result of past reviews … However, the ability to deliver operational
performance of major systems within predicted cost and schedule has
not improved over the last 20 years”

How do We Know that it is Broken?

53

Threats Combatant
Commands

JROC
(DOD & Services)

OSD,
White House
(Executive Branch)

Oversight
Organizations

(Acquisition Workforce)

R

R

$

Allied

Capabilities

JCIDS

Congress
(Legislative Branch)

Weapon

Systems

Management

Hardware
Development

Contractor
R

$

$

Software
Development

DOD 5000.2

PPBE

• Replace the Joint Capability Integration Development System (JCIDS)

with a new, two-year recurring planning process based on the 15-year

extended plans submitted by combatant commands

• Stabilize the Planning, Programming, Budgeting, and Execution

(PPBE) process

• Introduce a new requirements process with 2-year duration

• Establish a distinct, stable Program Funding Account

• Increase program predictability

• Program all accounts to a high, 80/20 confidence level

• Establish very early a realistic capability delivery rate

• Establish very early all test plans

– Complete Test & Evaluation Management Plan (TEMP) and Initial

Operational Testing & Evaluation Plan (IOT&EP) prior Milestone B

Selected* DAPA Recommendations in 2006

54

* There were more recommendations but those did not have potential agile

 implications

Clearly, the DAPA panel valued stability and

predictability as opposed to agility

• Alternatives not considered
– Clearly, no relationship to agile development

• Funding unstable
– Agile development might be helpful in dealing with unstable funding, but only

at the price of delaying or dropping requirements

• Inadequate contracting strategy
– The report is referring to the failure of Total System Performance

Responsibility (TSPR) and lack of evolutionary strategies in certain

acquisitions; neither has agile software development implications

• Inadequate contractor oversight
– This concern is also related TSPR; While some agile principles would embed

more government personnel in the development process, due to lack of

contracting rigor this involvement would be costly and ineffective

– Also, increasing the acquisition work force has been suggested, but in

the current climate of drastic budget cuts it is not feasible

• $148–$178B DOD cuts are planned between 2012 and 2016**

• Additionally, due to looming sequestration, $492B DOD cuts over 10 years

Acquisition Problems Identified in 2011 by the

Government Accountability Office (GAO)*

55
* [Chaplain 2011], **[Weisgerber 2011]

More, GAO-identified Acquisition Problems

• Optimistic cost and schedule estimates
– The operative word seems to be “optimistic”, which has nothing to do with

the details of development methodologies. Additionally, due to the difficulties

with macro-estimation in agile development, one can expect further

dissatisfaction with the accuracy of cost and schedule estimates

• Requirements unstable
– Due to its adaptive nature agile development is supposed to help with

handling unstable requirements. However, regardless of the implemented

agile project management strategy, volatile requirements will yield inaccurate

cost and schedule estimates, ultimately resulting in customer dissatisfaction

• Software needs poorly understood
– This is also a requirements and early architecting issue. Again, selected

agile development practices do facilitate the gradual, more effective

discovery of software-level requirements, but still, software estimates,

particularly the early ones, will be grossly inaccurate

• Technology immature

– This has not been a software issue on the reviewed acquisitions

56

Agility and agile software development still do not seem to be the answers

Section 804

• A recent directive by Congress to shape the future of defense

acquisitions is
– Public Law 111-84, The National Defense Authorization Act for

Fiscal Year 2010; Section 804. Implementation of New Acquisition

Process for Information Technology Systems

• The directive targets the streamlining of Defense Business System

(DBS) Acquisitions

57

Weapon systems and National Security Systems

acquisitions are still carried out according to DOD 5000.02

Defense
Systems

Information
Technology
(IT) Systems

National
Security
Systems

Defense
Business
Systems

Weapon
Systems

Does Section 804 Direct the Incorporation of Agile

Methodologies in DOD Software Acquisition?

• Why are we even asking the question?

– Quotes from the November 14-15, 2011 National Defense Industry

Association (NDIA) Agile Scrum Workshop’s invitation

• “The law [Section 804] directs the incorporation of Agile methodologies in

DOD software acquisition … Agile cannot fail. Unequivocally, Agile cannot

fail.”

• However what Section 804 actually requires is an acquisition process for

DBS acquisitions only, with the following characteristics
– Early and continual involvement of the user

– Multiple, rapidly executed increments or releases of capability

– Early, successive prototyping to support an evolutionary approach

– Modular open systems approach (MOSA)

• Section 804 requires a new acquisition process but congress cannot

(and should not) legislate a software development process

58

The wording is indeed inspired by agile ideas, but the connection to

specific agile software development practices is very weak or nonexistent

More on Silver Bullets - Spiral Development vs. Agile

Methods

• Spiral development is a precedence for a fiasco when the government

tried to mandate a development process

– Spiral development, first introduced in 1988, is one of the most complex and

most powerful adaptive process models

– It looked so promising that in 2003 it was declared as the DOD’s preferred

development strategy in the DOD 5000.2 instructions

– However, people struggled with the implementation of the process and the

lack of success culminated in the elimination of the spiral model from the

DOD 5000.02 instructions in 2008

• Agile development is essentially an “extreme” adaptive process model

– Apparently an adaptive process model is being pushed again, without any

attempts to understand why spiral development failed and what it takes to

manage major acquisitions with adaptive approaches

59

“It is déjà vu all over again”

~~~ Yogi Berra 



What May the Future Bring? 

• There is numerous evidence that the government wants to do away 

with cost-plus contracts and wants to pursue fixed price contracts* 
– Presidential memorandum 

– Office of Management and Budget (OMB) memorandum 

– Revised procurement regulations 

– Additional, administrative barriers to cost-plus contracts 

 

60 

Fixed 

Price 

Contracts

? 

* Source: [Chierichella 2012] 



However, Further Analysis is Needed 

• Fixed price contracts are appropriate to acquire mature products 

• In any other situations fixed-price contracts are contra-indicated, e.g., 

– One of a kind weapon system development  

• The development of such systems is always pushing the technology 

envelope 

– Information Technology (IT) system development  

• Most of the time IT systems end up being one of a kind systems, 

regardless of the contractor’s sales pitch and buzzwords like web-based, 

Cloud, Service Oriented Architecture (SOA,) etc. 

• These systems need to be viewed as system of systems with emergent 

characteristics and inter-twined elements across multiple organizations or 

even multiple military, intelligence, or other government departments 

– Unfortunately, due to foreseeable budget cuts and additionally, due to the 

looming danger of sequestration the push for fixed price contracts might 

prevail 

 

61 

However, remember the Iron Triangle? Pursuing agile development 

and fixed price contracts at the same time is not feasible 



Conclusions 



Conclusions - 1 

• Continuing problems in the software enterprise (earlier the symptom 

was called the “software crisis”) forced organizations to continuing 

experimentation with new development methods 
– Part of this experimentation is manifested in the rediscovery and 

sometimes just renaming of known processes 

– Experimentation is further fueled by the “bandwagon effect” 

– Unfortunately, there is no sufficient data with acceptable quality available 

to properly characterize the emerging agile methods and establish a 

reliable performance baseline 

• In the meantime, defense acquisitions of software-intensive systems 

are still struggling and there is no effective solution in sight  
– The demand for bigger and more sophisticated weapon systems is 

constantly increasing while the scaling problem of processes and the 

management of the continuously growing scope are not resolved 

– Also, a tendency for blind copying of industry practices is present due to a 

persistent opinion that “industry knows what to do and we should just 

adopt industry practices” 

• Unfortunately, the associated risks are not well understood and in some 

cases are explicitly covered up 

 

 

63 



Conclusions - 2 

• What Acquisition Program Office personnel needs to do 

– Continuously educate itself on the emerging development methods 

– In the contracting phase must insist on the use of robust development 

standards 

• The government should not settle for vague references to agile 

programming; must insist on a detailed Software Development Plan 

(SDP) that fully characterizes all planned life cycles, their internal 

relationships, and the planned implementation details of all life cycle 

processes and associated activities 

• Mission success criteria and synergy with mission assurance needs must 

be used to validate the SDP before acceptance for the contract 

– In the contract monitoring phase must implement an effective mission 

assurance program 

• Mission assurance is essentially an ingrained instrumentation of the 

development process; it is a necessity and must not be allowed to be 

viewed by the development organization as a “nice to have”, negotiable 

feature 

64 



65 

"The temptation to 'cut corners,' even in the name of being efficient or 

'expedient,' is ever-present, especially in a global business that is 

economically unforgiving...  

That is why 'getting it right' must be a 24/7 commitment.“ 
~ Dr. Wanda Austin, President and CEO, The Aerospace Corporation 

Conclusions - 3, or What You Really Need to Remember… 



Acronyms 

66 

APO Acquisition Program Office  

ATIP Aerospace Technology Program 

BDUF Big Design Up Front 

CEO Chief Executive Officer 

CMMI Capability Maturity Model Integration 

COTS Commercial Off-the-shelf 

DAPA Defense Acquisition Performance Assessment 

DoD Department of Defense 

FAR Federal Acquisition Regulation 

FFRDC Federally Funded Research & Development Center 

GAO General Accountability Office 

GUI Graphical User Interface 

IBM International Business Machines 

IID Iterative-Incremental Development 

IOT&EP Initial Operational Testing & Evaluation Plan 

IT Information Technology 

IV&V Independent Verification & Validation 

JCIDS Joint Capabilities Integration & Development System 

JROC Joint Requirements Oversight Council 

KDSI Thousand Delivered Source Instructions 

LTCD Long Term Capability Development 

MOSA Modular Open System Architecture 

NDIA National Defense Industry Association 

OSD Office of the Secretary of Defense 

OT&E Operational Test & Evaluation 

PPBE Planning, Programming, Budgeting & Execution 

RAD Rapid Application Development 

RUP Rational Unified Process 

SE&I Systems Engineering & Integration 

SETA Systems Engineering and Technical Assistance 

SEU Single Event Upset 

SW Software 

TCO Total Cost of Ownership 

TEMP Test & Evaluation Management Plan 

TQM Total Quality Management 

TSPR Total System Performance Responsibility 

XP eXtreme Programming 

YAGNI You Aren’t Gonna Need It 

 



References - 1 

67 

Adams 2005 Adams, R. J., et al, Software Development Standard for Space Systems, The Aerospace 
Corporation Technical Report TOR-2004(3909)-3537, Revision B, March 11, 2005 

Agile 2001 Agile Alliance, Manifesto for Agile Software Development, 2001, 
<http://www.agilealliance.org> 

Ambler 2006 Ambler, S. W., The Agile Unified Process, 
<http://www.ambysoft.com/unifiedprocess/agileUP.html> 

Ambler 2007 Ambler, S. W., Agile Documentation Strategies, Dr. Dobb’s Journal, February 05, 2007 

Ambler 2011 Ambler, S. W., Agile/Lean Documentation: Strategies for Agile Software Development, 
<http://www.agilemodeling.com/essays/agileDocumentation.htm> 

Baird 2002 Baird, S., Extreme Programming Practices in Action, December 6, 2002,  
<http://www.informit.com/articles> 

Beck 2000 Beck., K., Extreme Programming Explained: Embrace Change, Addison-Wesley 2000 

Beck 2004 Beck., K., Extreme Programming Explained: Embrace Change (2nd Edition), Addison-
Wesley, 2004 

Boehm 2004 Boehm, B., Turner, R., Balancing Agility and Discipline – A Guide for the Perplexed, 
Addison-Wesley, 2004 

Brooks 1987 Brooks, F., No Silver Bullet – Essence and Accidents of Software Engineering, IEEE 
Computer  20(4):10-19, April 1987 

Bruyere 2011 Bruyere, C. N., et al, Employment dynamics over the last decade, Monthly Labor Review, 
August 2011, pp 16-29 

Chaplain 2011 Chaplain, C. T., DOD Delivering New Generations of Satellites, but Space System 
Acquisition Challenges Remain, Government Accountability Office Report GAO-11-590T, 
May 11, 2011 

Chierichella 2012 Chierichella, J., The Budget Crunch, Fixed Price Contracts, and Lessons of the Past, 
National Defense, July 2012 

Cockburn 2004 Cockburn, A., Crystal Clear: A Human-powered Methodology for Small Teams, Addison-
Wesley, 2004 

Cohen 2011 Cohen, J., Does Pair programming Obviate the Need for Code Review? 
<http://www.softwarequalityconnection.com/2011/04/does-pair-programming-obviate-the-
need-for-code-review/>, April 1, 2011 

Collins 2012 Collins Free Online English Dictionary, 
http://www.collinsdictionary.com/dictionary/english/agile 

 



References - 2 

68 

DAPA 2006 Defense Acquisition Performance Assessment (DAPA) Report, March 2006 

DoD 2008 DoD 5000.02, Instructions on the Operation of the Defense Acquisition System, Signed 8 
December 2008 

INCOSE 2003 INCOSE Systems Engineering Handbook, INCOSE-TP-2003-016-02, Version 2a, June 1, 
2004 

Erwin 2009 Erwin, S. I., Pentagon brass: Stay away from management bestsellers, National Defense, 
August 1, 2009 

Eslinger 2006 Eslinger, S., Mission Assurance-driven Processes for Software-intensive Ground 
Systems, The Aerospace Corporation Technical Report ATR-2006(8056)-1, September 
30, 2006 

Guarro 2007 Guarro, S. B. and Tosney, W.F. (editors), Mission Assurance Guide, The Aerospace 
Corporation Technical Report TOR-2007(8546)-6018, 1 July 2007 

Guarro 2008 Guarro, S. B. and Hecht, M., Risk and Reliability Assessment of Software-Intensive 
Systems, Space Systems Engineering and Risk Management Symposium, Los Angeles, 
California, 26 February 2008 

Hannay 2009 Hannay, J. E., et al, The effectiveness of pair programming: A meta-analysis, Information 
and Software Technology  51(2009), pp 1110-1122 

Hedges 1981 Hedges, Larry V., Distribution theory for Glass's estimator of effect size and related 
estimators, Journal of Educational Statistics 6 (2): 107–128, 1981 

Highsmith 2000 Highsmith, J. A., Adaptive Software Development – A Collaborative Approach to 
Managing Complex Systems, Dorset House Publishing, 2000 

Jacobson 1999 Jacobson, I., et al, The Unified Software Development Process, Addison-Wesley, 1999 

Jacobson 2006 Jacobson, I., The Essential Unified Process – an Introduction, 
<http://www.ivarjacobson.com/essup.cfm> 

Krafcik 1988 Krafcik, J. F., Triumph of the lean production system, Sloan Management Review  30 (1): 
41–52, 1988 

MSF 2006 Microsoft Solution Framework for Agile Software Development Process Guidance,  
<http://www.microsoft.com/downloads> 

Nosek 1998 Nosek, J. T., The Case for Collaborative Programming, Communications of the ACM, 
March 1998/vol.41, No. 3 

Palmer 2002 Palmer, S.R., and Felsing, J.M., A Practical Guide to Feature-Driven Development, 
Prentice Hall, 2000 

 



References - 3 

69 

Palmer 2010 Palmer, S. R., Inspections,  
<http://www.step-10.com/SoftwareProcess/General/InspectionNotes.html> 

Paparone 2009 Paparone, C.R., From Not-So-Great to Worse – The Myth of Best Practice 
Methodologies, Defense AT&L, July-August 2009 

Poppendieck 2003 Poppendieck, M., Poppendieck, T., Lean Software Development: An Agile Toolkit for 
Software Development Managers, Addison-Wesley, 2003 

Poppendieck 2006 Poppendieck, M., Poppendieck, T., Implementing Lean Software Development: From 
Concept to Cash, Addison-Wesley, 2006 

Royce 1998 Royce, W., Software Project Management - A Unified Framework, Addison-Wesley, 1998 

Rule 2011 Rule, P. G., What do we mean by “Lean?”,  
<http://www.smsexemplar.com/wp-content/uploads/20110921-what-do-we-mean-by-lean-
v1b-IncludingNotes.pdf> 

Schwaber 1995 Schwaber, K., Scrum Development Process, Business Object Design and 
Implementation, OOPSLA ’95 Workshop Proceedings, Springer-Verlag Telos, 1997 

Stack 2008 What is a metaphor in the context of XP?, blog, 
< http://stackoverflow.com/questions/211557/what-is-a-metaphor-in-the-context-of-xp> 

Stansell 2004 Stansell, J., “Extreme Programming Explained: Embrace Change Second Edition” book 
review, <http://c2.com/cgi/wiki?ExtremeProgrammingExplainedEmbraceChange> 

Stapleton 2003 Stapleton, J., DSDM: Business Focused Development, Addison-Wesley, 2003 

Takeuchi 1986 Takeuchi, H., Nonaka, I., The New Product Development Game, Harvard Business 
Review, January-February 1986 

VersionOne 2010 The State of Agile Development – State of Agile Survey 2010, VersionOne, 2010 

Voas 2001 Voas, J., Faster, better, and cheaper, IEEE Software 18 (3) (2001) 96–99 

Weisgerber 2011 Weisgerber, M., DoD expects up to $100B more in cuts, White Paper, Federal Times, 
March 28, 2011 

 



Backup 



Representative Agile Software Development Methods 

• Agile UP (Agile Unified Process) [Ambler 2006] 

• ASD (Adaptive Software Development) [Highsmith 2000] 

• Crystal Clear [Cockburn 2004] 

• DSDM (Dynamic Systems Development Method) [Stapleton 2003] 

• Ess UP (The Essential Unified Process) [Jacobson 2006] 

• XP (eXtreme Programming) [Beck 2000], [Beck 2004] 

• FDD (Feature-Driven Development) [Palmer 2002] 

• Lean Software Development [Poppendieck 2003, Poppendieck 2006] 

• MSF (Microsoft Solution Framework) for Agile Development [MSF 2006] 

• Scrum [Schwaber 1995] 

 

71 



• The original* XP practices 

– The planning game 

– Small releases 

– Metaphor 

– Simple design 

– Continuous integration 

– Continuous testing 

– Refactoring 

– Pair programming 

– Collective code ownership 

– 40-hour work week 

– On-site customer 

– Coding standards 

 

 

XP Practices 

72 

* This list is based on [Beck 2000]  



The Planning Game 

• The planning game is a metaphorical name for requirements engineering 
and increment/iteration planning 

– It is essentially a meeting where the team is working through a stack of index 
cards that contain the user stories 

– Each required feature is described and elaborated in a user story (another 
metaphor…) 

• Responsibilities during the planning game* 

73 
* Source: [Baird 2002] 

Customer Developer 

Define scope of the release Estimate how long each user 

story will take 

Define order of delivery Communicate technical impacts 

of implementing requirements 

Set dates and times of release  Break down user stories into 

 tasks and allocate work 



The Planning Game - 2 

• However, the needed, overall systems engineering process that provides 
the context for software development is more complex [INCOSE 2003] 

74 

Synthesis

Process 
Output

Design Loop

Requirements Analysis

Process 
Input

System 
Analysis & 

Control

Functional 
Analysis/Allocation

Requirements Loop

Verification

It is 

recursive 

& 

Iterative 

Mr. Weasel also says… 

Well, Mr. User, are you ready to take direct responsibility for the progress? 



Small Releases 

• Start with the smallest feature set, release early and often 

• Duration 

– Releases may be provided every 1-3 months 

• Concerns 

– The earlier mentioned customer problem 

•  The need for excessive participation and associated responsibility in the 

planning and validation of these releases are not feasible 

– Scaling issue 

• In large systems it might be difficult to come up with a finite, incremental 

feature set to field tangible releases that the customer could appreciate 

 

 

75 

Having small, internal releases is a good engineering practice but the 

customer should not be responsible for validating these releases 



Metaphor 

• Each project supposed to have an organizing metaphor 

– Metaphors facilitate the dialog between the user and developer 

– Metaphors serve as a bridge between the terminology of the customer’s 

domain and the software engineering jargon 

– A metaphor of the metaphor: “Tribal Language” 

• Example metaphor 

– “Describing an agent-based information retrieval system we might say that 

this program works like a hive of bees, going out for pollen and bringing it 

back to the hive”* 

• This practice is quite benign (as opposed to “extreme”) and its cost is 

negligible. However, its value has not been proven. 

76 

Use of metaphors do not seem to represent any risks 

* Source: [Stack 2008]  



Simple Design 

• Keep the design as simple as possible for the moment and don't add 

features that are not needed for current functionality  

– The reasoning behind this practice is that if a feature is not valuable now, it 

is not worth the investment until it becomes valuable 

– Simple design is the practice-level implementation of the earlier introduced 

YAGNI concept and the avoidance of the supposedly bad approach of big 

design up-front (BDUF)  

• Keeping designs simple is a good idea in general 

• However, the operative phrase in this definition is “for the moment” 

– Remember Heisenbugs? Prudent consideration for all the overarching, 

nonfunctional requirements (like reliability, availability, etc.) requires 

extensive up-front design and thorough follow-up during development 

 

77 

A shortsighted, “extreme” implementation of this practice might lead 

to a Mission Assurance exposure  



Continuous Integration and Continuous Testing 

• Continuous Integration 

– Integrate with the whole system as often as feasible 

• Continuous testing 

– Unit testing and acceptance testing are alternating according to the rhythm of 

the process, which is driven by the duration of the applied timeboxes 

• Unit tests, written by developers to test functionality as they implement it 

– Conceptually, it is not different from any other approaches 

– In agile development a test-driven strategy is preferred where the unit 

test suite is developed before coding starts and the execution of these 

tests is automated – no particular mission assurance exposure here 

• Acceptance tests 

– The tests themselves supposed to be specified by the user/customer 

– The user/customer has to observe all tests or review test runs 

• In either case the user/customer is expected to approve test results 

according to the dictated process’ rhythm 

• However, see our earlier interim progress tracking concerns:  

78 

This is an undue burden on the customer – continuous 

acceptance tests are not feasible in a large project 



Refactoring 

• Refactoring is a technique to improve code without changing functionality 
– It is a declared XP virtue to refactor late in the design to increase performance 

• Examples 
– Repartitioning the code to smaller, easier to maintain chunks 

– Renaming some variables to be more descriptive 

– Re-evaluating the need for temporary variables 

– Extracting common behavior into a single code segment 

– Candidates for refactoring may be found via the “smell test” 

• Large program segments or classes 

• Deeply nested code 

• Long parameter list 

• Presence of switch (case) statements  

• Redundant code (e.g., a class that does not seem to do anything,) etc. 

• Risks 
– Every technique that changes a running or working system is not immune 
    to introducing errors, even if it is claimed that no functionality is impacted 

– “Refactoring in the small” can be helpful but “refactoring in the large” does not 

make sense and it is a dangerous practice 

 

79 

Refactoring must not be used as a replacement for proper architecting 



Pair Programming 

• Collaborative programming is not a new idea; it has been explored before* 

• Pair programming is a collaborative technique to ensure quality code 
– People are paired-up at a workstation and working together 

– However, it is not like a piano-duet on the computer keyboard ☺ 

 

 

 

 

 

 

 

 

 

 

– The members of the pair have different roles and those roles may change 

– People may change pairs too as needed 

• Pair programming is one of the most debated agile practices  
– Its effectiveness is evaluated on the following three dimensions when it is 

compared to solo programming: Effects on quality, duration, and effort. 

 

 
80 * See [Nosek 1998] 



The Effectiveness of Pair Programming 

• The reported results are based on a meta-analysis of 18 detailed 

studies* 

– The goal of a meta-analysis is to estimate the overall, combined effect 

– Rigorous meta-analysis ensures the standardization of the reported 

data sets and provides comparable effect estimates 

– In meta-analysis, rather than computing a simple mean, more weight is 

assigned to studies that carry more information 

• Authors used two different statistical models; we present their 

conclusions for a so-called “fixed-effects model” 

– A fixed-effects model assumes an unknown but fixed population 

– All 18 studies are seen as data drawn from the same population and 

variances between individual studies are viewed as results of subject 

variability 

 

 

81 
* Source: [Hannay 2009] 

Caveat: Effort, duration, and quality are not well-defined in 

general and are operationalized in very diverse ways 



• A little statistics 
– The standardized measure of effect size is Hedges’ g* 

• An effect size of .5 indicates that the mean of the pair programming 

group’s distribution is half a standard deviation larger than the mean of 

the reference group’s (the solo programmer’s) distribution 

– Effect sizes larger than 1.0 are “large”, 0.38 - 1.00 are “medium”, 

and 0 - 0.37 are “small” 

• Effect sizes from the meta-analysis 

 

 

 

 

 

 

• In plain English: Minor quality improvement and some schedule 

compression can be achieved at the price of somewhat higher cost 

 

Effect on Effect Size [g] Description of Effect 

Quality +0.23 Small significant positive 

Duration +0.40 Low-medium significant positive 

Effort - 0.73 Medium significant negative  

Reported Meta-analytic Effects of Pair Programming 

82 * [Hedges 1981]; ** [Voas 2001] 

Even in plainer English, “Faster, Better, Cheaper” does not work here either** 



Mission Assurance Risk in Pair Programming 

• XP, while does not explicitly forbids formal inspections, treats them as 

redundant and unnecessary 
– XP proponents claim that inspection happens all the time through pair 

programming 

– However, that pair programming is a general improvement over formal 

inspections (also called Peer Reviews) remains unproven* 

• Unique benefits of formal inspections 

– Inspectors’ independence from the creator of the inspected work product 

• “The issue is closeness, not ability. That’s why every writer needs an editor**” 

– Note that we used the term “work product”, which is broader than “code” 

– Knowledge transfer (although should not be treated as a training vehicle…) 

– Improving the process, like adding items to checklists, recommending tools like 

   a static code analyzer, recommending changes to coding standards, etc. 

– Reevaluating assumptions that were made earlier about requirements 

– Capturing and evaluating quality metrics, identifying common problem areas 

83 * [Palmer 2010]; ** [Cohen 2011] 

Despite of its positive impact on quality, pair programming 

is not an acceptable replacement for formal inspections 



Collective Code Ownership 

• No single person "owns" a module 

– Any developer is expected to be able to work on any part of the code-base 

at any time  

• In theory this is a good practice regardless of the used software 

development methodology 

• Caveat: In reality the practice does not scale up 

– There are limits to how much code evolution can somebody follow real-time 

– Also, programmers are no longer equal – like in medicine, high-level 

specialization is the current reality 

•  Specialization examples 

– Database developers, Graphical User Interface (GUI) developers, 

algorithm developers, networking specialists, infrastructure 

specialists (formerly called “system programmers”,) etc.  

 

84 

Collective code ownership, if applied properly, has a positive impact 



40-Hour Work Week 

• Programmer welfare is considered important 

– XP development is considered a stressful environment 

– Programmers should go home on time 

• Up to one week of overtime is allowed (Note that this is an XP guidance 

and not a Human Resources (HR) policy) 

• Consecutive weeks of overtime is a sign that the process might be failing 

• My take 

– Not just XP but software development in general is a stressful endeavor 

– Everybody should go home on time, not just programmers … ☺ 

85 



On-site Customer 

• According to this practice, the developers have continuous access to 

a real, live customer 

– Note that this is different (and much more involved) than the traditional 

Rapid Application Development (RAD) approach, where the customer 

primarily participated in early prototyping 

– It is also different from the prevailing, periodical program management 

reviews where customer representatives are present 

• In case of large, geographically distributed teams this expectation is 

not feasible 

– Development of large systems usually involves geographically distributed 

teams; the distributed structure of the organization is essentially a liability 

and source of numerous risks that need to be dealt with 

• The excessive burden on government personnel makes the practice 

also infeasible 

86 

However, the main risk is the underlying issue that the customers 

are now made implicitly responsible for all decisions and progress 



Coding Standards 

• The written code must be homogeneous 

– One should not be able to tell by looking at the code who on the team wrote 

or corrected a piece of it 

– This practice is closely related to Collective Code Ownership 

87 

Following coding standards is an unconditionally good practice 

regardless of the software development methodology used  



XP Practice Evolution – New XP Practices* 

88 
** See [Beck 2004] for the description of new XP practices 

• The planning game 

– Quarterly Cycle and Weekly Cycle are replacing the old practice 

• Small releases 

– Incremental Deployment and Daily Deployment are introduced 

• Metaphor 

– It was always the least understood practice and now it is eliminated 

• Simple design 

– Incremental Design and Single Code Base are introduced 

• Continuous integration 

– No change 

• Continuous testing 

– Emphasis on Test-First Programming 

• Refactoring 

– Eliminated as a formal practice; became part of Incremental Design  

• Pair programming 

– No change 



New XP Practices-2 

89 

• Collective code ownership 

– It is now called Shared Code 

• 40-hour work week 

– Eliminated, Energized Work and Slack replaces this practice 

• Energized Work is a reinterpretation of the sustainable pace concept 

• Slack means to mark things that can be dropped if you get behind 

• On-site customer 

– Sit Together, Whole Team, and Real Customer Involvement practices 
were introduced 

• Coding standards 

– Not called out anymore but it is still a foundation of Shared Code 

 

• There are more new practices; a new value; and several new principles 
but we were only focusing on the evolution of the original 12 practices 

 



Use of Trademarks, Service Marks and Trade Names 

Use of any trademarks in this material is not intended in any way to 

infringe on the rights of the trademark holder. All trademarks, 

service marks, and trade names are the property of their 

respective owners. 

 

The clip art on slides 8, 15, 20, and 76 is courtesy of Animation Library 

The clip art on slide 16 is courtesy of Florida’s Educational Clearing House 

The clip art on slide 24 is courtesy of Mountain Goat Software 

The clip art on slide 34 is courtesy of PicGifs 

The clip art on slide 51 is courtesy of Wallpapers4Desktop 

The clip art of a witch on slide 60 is courtesy of All-free-download 

All other clip arts on slide 60 are owned by The Aerospace Corporation 

The clip art on slide 74 is courtesy of Elee Kirk 

The picture on slide 80 is courtesy of Dr. David Bader 

 

 

 

 

90 


