

Dr. Grace M. Bochenek, Director

U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER (TARDEC)

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.

S&T Vectors for Improving Operational Energy Efficiency

Operational Energy:

"energy required for training, moving, and sustaining military forces and weapons platforms for military operations."
2010 QDR

Pursue Operational Energy Efficiency by targeting the Army's Energy Security Goals

> Increased Use of Renewable / Alternative Energy

Assured Access to Sufficient Energy Supplies

Reduced Adverse Impacts on the Environment Reduced Energy Consumption

Increased Energy Efficiency Across Platforms and

Facilities

Army Power and Energy

Integrated Approach to Meet Army Energy Security Goals

ESG 1: Reduced Energy Consumption

ESG 2: Increased Energy Efficiency

ESG 3: Increased Use of Renewable & Alternative Energy

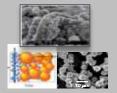
ESG 4: Assured Access to Sufficient Energy Supplies ESG 5: Reduced Adverse Impacts on the Environment

- Give Soldiers and leaders capability to manage energy status, resources and performance
- · Significantly reduce energy footprint
- Provide flexibility and resiliency by developing alternatives and adaptable capabilities

Ground Vehicle Technical Challenge

Mobility & Energy Efficiency

Occupant Centric Survivability


Vehicle Dynamics

Newton-Euler Equations of Motion

 $\mathbf{M}\ddot{\mathbf{q}} + \mathbf{C}_{\alpha}^T \lambda = \mathbf{Q}$ C(q,t)=0

solve for vehicle mobi<u>lity</u> and component loads

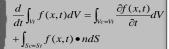
 $\begin{bmatrix} \mathbf{M} & \mathbf{C}_{\mathbf{q}}^T \\ \mathbf{C}_{\mathbf{q}} & \mathbf{0} \end{bmatrix} \! \begin{bmatrix} \ddot{\mathbf{q}} \\ \boldsymbol{\lambda} \end{bmatrix} \! = \! \begin{bmatrix} \mathbf{Q}_c + \mathbf{Q}_v \\ \mathbf{Q}_d \end{bmatrix}$

Hi-Energy, Hi-Density Energy Storage

Comprehensive

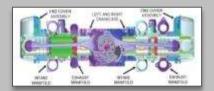
Thermal Management

of Propulsion & Cabin


Performance & Reliability

Robust Multi-Disciplinary Optimization

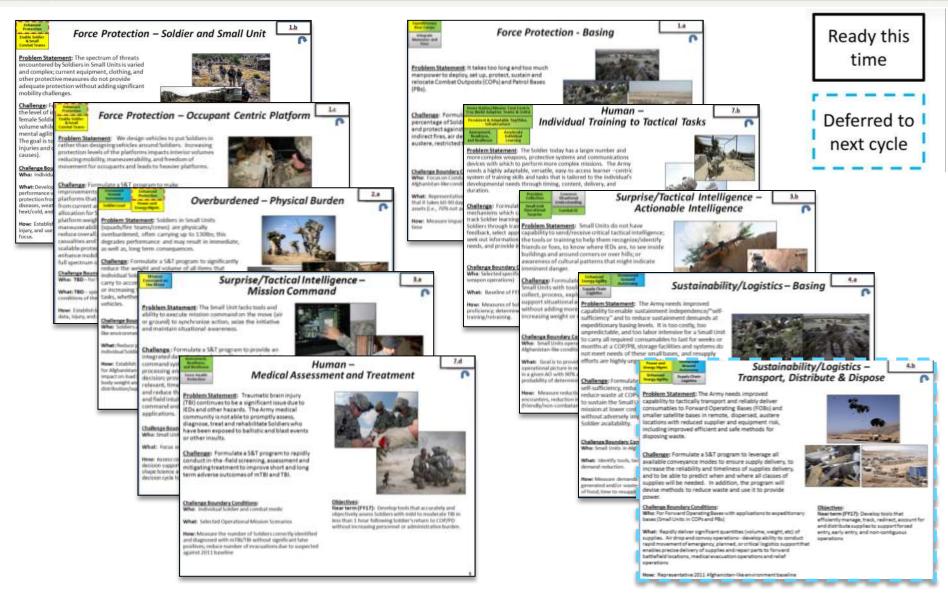
Active Protection **Systems**


Holistic Occupant Centric Protection

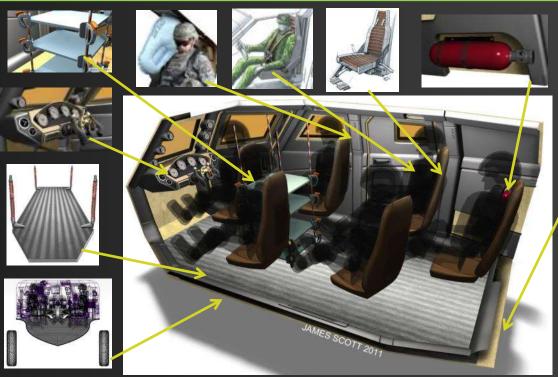
Affordable, Multihit Ceramic Armor

High Power Density, Low Heat Rejection & Fuel Efficient Engines

Fire and Toxic **Fume Resistant** Materials



Technology Enabled Capability Demonstrations





Force Protection – Occupant Centric Platform Technology Enabled Capabilities Demonstration (TECD)

Pre-conceptual configuration

New design philosophy that considers the Soldier first and builds the vehicle to surround and support the Soldier and their mission.

- Reduce casualties by 50% across each mission role with scalable protection levels to defeat a wide range of threats
- Enhance fielded mobility performance
- Maintain freedom of action during full spectrum operations.

Occupant Centric Survivability for Military Ground Vehicle Design:

- Publish an overarching Military Standard (MIL-STD)
- Publish technical specifications
- Update and develop component and sub-system Test Operations Procedures (TOPS/ITOPS)

Occupant Centric Concept Demonstrator:

A physical realization of the new Occupant Centric design philosophy

Current Platform Demonstrator

A unique occupant protection suite of technologies specific to the platform given its design constraints

Weight Reduction:

Weight neutral at threshold and 25% weight reduction at objective

Maneuverability and Mobility:

Maintain fielded mobility performance

Energy Technology

Ground Vehicle Power and

Ground Vehicle Power and Energy **Technology Taxonomy**

Generation Power

Integrated Starter Generator

Energy Storage

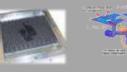
Li-Ion / Ultracap Hybrid Energy Storage

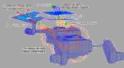
Capacitors

Thermal Mgmt & Power Distribution

Radiators

Microgrids


Power Controllers for Power Management


Heat Recovery

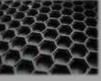
Power Converters/Inverters

Advanced Electronics Cooling

Thermal Architecture

Materials

Materials


Thermal Interface Materials

Wide Band Gap Materials (SiC)

High Temperature SiC Modules

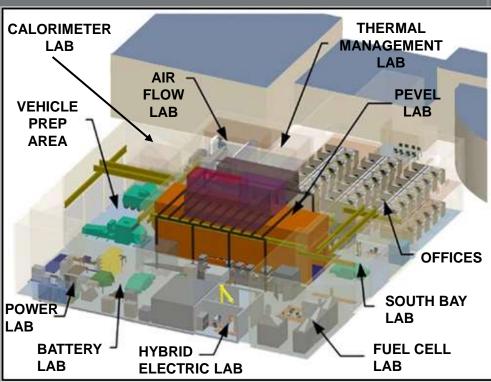
Lightweight Structures

Inductors

_ubricants

Biomass Energy (Renewable)

Conversion Process



Ground Systems Power and EnergyLaboratory

Capabilities

- Provides steady state and transient (mission profile based) testing
- Ability to test current and emerging classes of ground vehicles
- 32,000 ft² of laboratory space
- Environmental chamber able to test between
 -60° to 160° F with winds up to 60 mph
- Provides 10 dynamometers to allow testing of up to 5 axle wheeled vehicles

Grand Opening April 11, 2012

Certified LEED Silver in accordance with the USGBC Board

Army and DOE Sign Charter to Achieve Vehicle Power and Energy Efficiency

AVPTA will move us toward reducing our reliance on fossil fuels.

Combines the intellect of the DA and the DOE to accelerate energy-related R&D initiatives.

Advanced Vehicle Power Technology Alliance (AVPTA)

Breaking New Ground

22 July, 2010

18 July, 2011

- Partnership with true collaboration to enhance national energy security
- Demonstrate federal government leadership
- Provide shared capabilities and access to resources
- Accelerate technology development
- Drive innovation
- Increase the value of research investments
- Address national energy needs

Achieving Common Goals in Joint Technology Areas

Advanced
Combustion Engines
and Transmissions

Lightweight Structures and Materials

Energy Recovery and Thermal Management

Alternative Fuels and Lubricants Hybrid Power Systems

Analytical Tools

Technical areas for joint activity:

- High density, energy efficient powertrain
- •Extreme gains in engine efficiency
- Reduce weight to improve performance
- Cost reduction for consumer market
- •Cost Improved efficiency, manage heat generation
- Efficiency gains through waste heat recovery
- Standardization& security
- Efficiency gains through advanced oil formulations
- Efficiency improvements
- Assessment/ Design Trades

Driving results through collaboration

It's All About the Warfighter

TARDEC's Ground Vehicle Gateway

https://tardec.groundvehiclegateway.com

Lead. Innovate. Integrate. Deliver.