

New Propellant-Technologies for Small Calibre Ammunition

Beat Vogelsanger, Ulrich Schädeli, Urs von Mühlenen, and Dominik Antenen

(Conference Abstract Reference Number #15931)

Contents

- Introduction
 - **▶** Conventional Small Calibre Propellants
 - ▶ Challenges / New Requirements
- The Solution Nitrochemie Small-Calibre Propellants
- Examples
 - ► EI® Propellant for Lead-Free Ammunition
 - Improved Stability
 - ▶ C4 Propellants for Highest Performance
- Summary and Conclusions

Introduction I – Conventional Small Calibre Propellants

Propellant Geometry / Shape

Spherical Cylindrical Cylindrical 7/19-perforated

1-perforated

Progressivity: very low

7-/19-perforated cylinders are <u>not</u> suitable for small calibre applications due to the much larger grain sizes required to match the requested burning rates

Propellant Formulation

Performance Potential:

▶ Chemical/ballistic Stability:

Single Base Double Base

low

high

high

low

Introduction II - Challenges / New Requirements

Non-toxic formulation

Dinitrotoluene DNT + Phthalate Esters DBP, DEHP, DIBP are on the European REACh-list of substances of very high concern (REACh = Registration, Evaluation, Authorisation and Restriction of Chemicals)

▶ They will be banned by European legislation from 2015!

► All currently introduced ball powders and many single base propellants contain at least one of these components

► These propellants need to be <u>re-designed</u> and <u>re-qualified</u> (including re-qualification of ammunition) at least in Europe

"WE'RE GOING TO ASK THE DOCTORS TO DISCONNECT YOUR LIFE SUPPORT, HOWARD. WE CERTAINLY DON'T WANT YOU ABSORBING ANY PHTHALATES..."

Introduction II - Challenges / New Requirements

Non-toxic formulation

- ▶ Dinitrotoluene DNT + Phthalate Esters DBP, DEHP, DIBP are on REACh-list of substances of very high concern
- ▶ They will be banned by European legislation from 2015!
- ▶ All currently introduced ball powders and many single base propellants contain at least one of these components
- ▶ These propellants need to be <u>re-designed</u> and <u>re-qualified</u> (including re-qualification of ammunition) at least in Europe

Increased Stability / Service Life

- ▶ In Particular for out-of-area missions
- Some nitroglycerine-based formulations have caused problems such as increased peak pressure or deterioration of other functional and ballistic properties in aged ammunition

Introduction III – Challenges / New Requirements

Reduced Production of Toxic Combustion Gases

- ▶ Toxic gases: Carbon monoxide CO, hydrogen cyanide HCN, ammonia NH₃
- ▶ Amount of toxic gases has caused health issues with the shooters
- Need for propellants with reduced toxic gas emission

Compatibility with "Green" Lead-Free Ammunition

- ▶ Lead-free ammunition → increased gun barrel wear and strong copper build-up in the barrel
- ▶ Side effects can be reduced by incorporating tin dioxide into propellant
- ▶ Tin dioxide is at least slightly toxic (irritant / pulmonary effects)
- ▶ Need for less toxic de-coppering and wear-reducing agents

Increased Performance

- Higher performance to increase penetration of body armour
- Need for propellant performance higher than with ball powder

The Solution - Nitrochemie Small-Calibre Propellants

Propellant Formulations

- **▶** Single Base → intermediate performance / outstanding stability
- ▶ Extruded-Impregnated EI® → high performance / good stability

Propellant Geometry

- ▶ <u>1-perforated Cylinders</u> → intermediate progressivity
- ▶ <u>4-perforated Cubic "C4"</u> (absolutely new grain geometry)
 - → high progressivity + high gravimetric density

Non-toxic Formulation

- ▶ All formulations are already REACh-compatible (no DNT, DBP,)
- ▶ Also other toxic components have been replaced (e.g. DPA)

- Non-Toxic De-coppering Agent for Lead-Free Ammunition
 - New / patented de-coppering concept based on bismuth compounds
 → more effective + ten times less toxic than tin dioxide
 - → more effective + ten times less toxic than tin dioxide

Example 1: EI® Propellant for Small Calibre Applications Solving the Toxicity / Health Problems of Small Cal Ammunition

- First generation of lead-free ammunition (with ball powder) caused severe health issues (Norwegian Defence Forces)
 - Irritated airways, coughing, fever, could sweats, headache, nausea and body pain (in not acceptable extent)
 - ▶ At indoor <u>and outdoor</u> shooting ranges
 - ▶ Filled headlines in Norwegian media (spring 2009)
 - Assumed cause is combination of metal particles (copper Cu, zinc Zn, tin Sn) and combustion gases (carbon monoxide CO, ammonia NH₃, hydrogen cyanide HCN)
 - Armed Forces Chief stopped use of this lead-free ammunition
- Second generation lead-free ammo (with El®-Type propellant + bismuth agent)
 - strongly reduced emission of toxic gases and metal particles
 - no health issues have been reported whilst firing this new ammo
 - Norwegian Defence Forces are now procuring this ammo!

Example 1: El[®] Propellant for Small Calibre Applications

Solving the Toxicity / Health Problems of Small Cal Ammunition

Emission Results of Norwegian Study (FFI / NAMMO 2011)

- SS 109 (Lead / Ball Powder)
- NM 229 (lead-free / Ball Powder)
- BNT Mk2 (lead-free / EI®)

Improved ammo design + EI® propellant solved health problems

Example 1: EI® Propellant for Small Calibre Applications

Solving the Toxicity / Health Problems of Small Cal Ammunition

Emission Results of Norwegian Study (FFI 2009)

- M193 (Lead / Ball Powder)
- M855 (Lead / Ball Powder)
- NM229 (lead-free / Ball Powder)
- SS109 SELF (lead-free / EI®)

Best results obtained with RUAG SELF ammo design + EI® propellant

Example 2: Improved Chemical and Ballistic Stability

Chemical and ballistic stability of single base propellant is (inherently) much better as for nitroglycerine containing propellants (EI®; Ball Powder)

Single Base "C4-SB"

- ▶ NG-free → outstanding stability
- Improved progressivity ("C4")
- ▶ Performance in range of ball powder / EI® 1-perforated

EI® Extruded Impr. "C4-EI®"

- Contains NG; good stability
- **▶** Boost in performance
- V₀ increase of 30 − 50 m/s at same pressure against ball powder

Increased Gravimetric Density / Bullet Charge Weight

■ Gravimetric density and thus maximum charge weight in the bullet for cubic propellants C4-SB and C4-EI® is much higher than for standard EI® (cylinder 1-perforated); and almost equal as for Ball Powder

Increased Progressivity of Propellant Burning

■ Closed bomb testing confirms that progressivity of C4-propellant is in same range as for 7-perforated propellants and thus much higher than for cylindrical 1-perforated and for spherical propellants

Interior Ballistic Performance of C4-Propellants (5.56mm NATO)

- Single Base C4-SB achieves equal performance as NG-containing ball powder!
- lacksquare C4-EIlacksquare achieves 40 m/s higher velocity as ball powder lacksquare significant gain !

Interior Ballistics / Peak Port Pressure (5.56mm NATO)

■ Reaching the required peak port pressures (ppp) is often difficult, in particular at cold – this is no problem with C4-propellants; they show high ppp

On-going Projects / Partnerships

- First C4 samples shipped to main customers in January 2013 for testing
 - ▶ Limited testing has yielded excellent results in several weapon / ammunition systems
 - High performance at low pressure levels could be confirmed
 - Good loadability; good functionality
 - No unusual erosion; no fouling; low dispersion

Customer	C4-SB	C4-EI®
Switzerland	308 Win	
Germany	(5.56mm)	
UK		5.56mm
Scandinavia		5.56mm
USA		7.62mm + Commercial

Summary and Conclusions

- The small calibre ammunition industry faces several propellant-related challenges in the near future:
 - ▶ DBP and DNT will be banned in Europe from 2015; other nations follow
 - Adjustments in propellant industry
 - Many small calibre propellants need to be re-designed and re-qualified
- A good opportunity to change to Nitrochemie propellants!
 - ▶ Choice of different propellant types (single base / El® in 1- and 4perforated grains, even 7-perforated ECL® for 12.7mm systems)
 - ▶ All propellants have already non-toxic formulations ("REACh compatible")
 - ▶ Well established propellants for all major ammunition/weapon systems available (already qualified and in service in several NATO/PfP nations)
 - New propellant types with outstanding properties
 - C4-SB allows for the first time to fulfil all NATO 5.56mm requirements with a nitroglycerine-free propellant
 - C4-EI® boosts performance into a region not accessible before

Thanks very much for your attention!

NITROCHEMIE WIMMIS AG, CH-3752 Wimmis, Switzerland

Tel: +41 (0) 33 228 13 00 Fax: +41 (0) 33 228 13 30

Email: <u>beat.vogelsanger@nitrochemie.com</u>