

G. Strul, E. Shachar, Y. Cohen, D. Grinstein

Subject

Israel Military Industries Ltd.

New Requirements for Propellants:

- Increased performance.
- Reduced sensitivity / LOVA.
- Reduced toxicity / Environmental impact Replacement of toxic components. Environmental regulations.

Toxicity of Propellants Components:

- □ Dinitrotoluene (DNT) has been used for years as energetic plasticizer in many propellants DNT, however, is extremely toxic.
- Current Stabilizers are either very toxic by themselves or they produce toxic products during ageing.
- Nitroglycerine NG has physiological effects in cardiovascular system. nitroglycerine has migration tendency.
- Phthalate-Plasticizers (DBP) is toxic.

<u>The Task:</u>

Development of a high performance LOVA propulsion systems for gun ammunitions

Desired Features:

- Extended range.
- Raising Energy contents by using high impetus formulations.
- Increase progressivity.
- Low temperature dependency.
- Controllable burning rate regime.
- Improved safety and toxicity properties.
- Green ingredients as much as possible.

Methodology of New Propellant Development

Synthesis R&D – Lab scale

- Potential energetic materials

- Thermochemical evaluation

Synthesis R&D – Pilot scale

Production

Formulation & testing

Qual. & Ammunition

Energy Increase

To maximize the Impetus
$$F=R \frac{Tv}{MW}$$

High Energetic materials + Novel Energetic plasticizer

$$\begin{array}{c|c} O_2N & H_2C & NO_2 \\ & & N \\ & & \\ H_2C & CH_2 \\ & & \\ & & NO_2 \end{array}$$

Propellant for 105-mm Gun Ammunition Thermo-Chemical evaluation

APFSDS-T 105 mm

Formulation	Impetus [j/g]	T[K]	M [g/mol]
# 1	1169	3517	25.0
# 2	1218	3442	23.5
#3 – (CLP-26)	1204	3259	22.5
M-26	1090	3231	24.6

Safety features

<u> </u>				
	CLP-26	M-26		
Impact sensitivity	5.5 N	3.2 N		
Friction sensitivity	>360 N	Mild reaction at 360N		
Electrostatic discharge (ESD) sensitivity	No reaction	No reaction		
DSC ignition temperature	193°C	186°C		
Stability	100 min	65 min		
GAP-TEST	No detonation	No detonation		

Gap-test

Accelerated aging program

Oven 65 °C - 60 days

Interruption bomb

Closed vessel bomb

Lab Test

40 mm firing test

105 mm firing test

Accelerated aging Interruption bomb

Un-aged propellant

After 60 days aging

Ballistic Stability After Aging

Propellant for 105-mm Gun Ammunition *IM tests*

Bullet impact test

Packaged / Unpackaged round

Reaction Type V:

Rupture of packaging, ejection of propellant, partly burning

Loose propellant

Propellant for 105-mm Gun Ammunition *IM tests*

FCO - TEST - Stanag 4240

Reaction Type V:

Projectile ejection followed by ejection of propellant.

In logistic level test:

Rupture of packaging, Projectile ejection, partly burning.

Propellant for 105-mm Gun Ammunition *IM tests*

Shaped charge jet attack

Rupture of cartridge, Projectile ejection followed by ejection of propellant, partly burning

Propellant for 105-mm Gun Ammunition Open air burning

After 30% of burning time

IR photo after 70% of burning time

IR photo after 10% of burning time

Safety features

	CLP-15	CEP-2
Impact sensitivity	6 N	3.2 N
Friction sensitivity	>360 N	Mild reaction at 360N
Electrostatic discharge (ESD) sensitivity	No reaction	No reaction
DSC ignition temperature	200 & 237°C	186°C
Stability	100 min	70 min
GAP-TEST	No detonation	No detonation

Gap-test

Accelerated aging program

Oven 65 °C - 120 days

Interruption bomb

Closed vessel bomb

Lab Test

120 mm firing test

Propellant for 120-mm Gun Ammunition Accelerated aging

Stabilizer depletion & weight loss of Nitramine compared to DB propellants

Accelerated aging Interruption bomb

Accelerated aging

Microscope FTIR investigation

Nitramine FTIR distribution across the web size grain

Nitramine FTIR imaging along the LOVA grain

Accelerated aging

Ballistic Shelf Life

Ballistic Performances after accelerated ageing

Propellant for 120-mm Gun Ammunition *IM tests*

FCO - TEST - Stanag 4240

Reaction Type V:

Burning of propellant and combustible cartridge.

Propellant for 120-mm Gun Ammunition *IM tests*

Bullet Impact Test - Stanag 4241

Result: Type V reaction rupture of cartridge, ejection of propellant, partly burning

Requirement: No explosion or detonation.

Propellant grains

Same results when tested in logistic level

Open Burning of loose CLP 15 propellant

After burning

Set up before

Result: Moderate burning (~ 75 sec)

Reference (CEP-2): Faster burning (-10 sec)

Propellant for 120-mm Mortar Ammunition

CLPM-15

The new mortar CLPM-15 propellant shows superior ballistic performance

- Extended range
- Force > 1200 j/gr
- Low temperature dependence

Propellant for 120-mm Mortar Ammunition Small scale erosion bomb

IMI has introduced a novel LOVA propellant family

Improved Ballistic performances

- -Higher muzzle velocity
- -Low flame temperature (< 3500K)
- -High Impetus (>1200 j/g)
- Stable formulation
 - Low weight loss during aging
 - Low stabilizer degradation
- -Enhanced safety properties
 - low vulnerability in IM test
 - Nitroglycerin free

105 & 120 mm gun propellant are IDF qualified

120 mm mortar propellant is under qualification phase

Future plans

IMI intends to further increase its insensitive nitramine propellant family and to broaden the range of applications in actual and future ammunition systems

Acknowledgments

To IMI propellant team: Yael C., Eli S., Idit M., Haim R.

And to the audience for the attention

