

Large Scale Manufacture of Granular IMX-104 Melt Pour Explosives

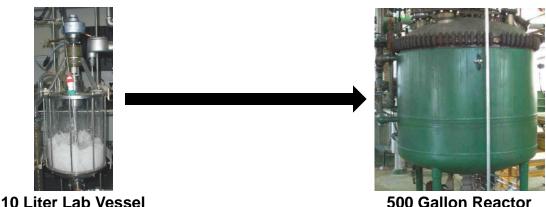
NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2013

David Price, Alberto Carrillo*
BAE SYSTEMS OSI, Holston Army Ammunition Plant
Phillip Samuels, Keyur Patel, Omar Abbassi
RDECOM-ARDEC, Picatinny Arsenal

Topics of Discussion

- Insensitive Melt Pour Explosives
- Laboratory Development Work
- Intermediate Scale Up of Baseline Process
- Large Scale Manufacture
- Conclusions and Future Work

Insensitive Melt Pour Explosives

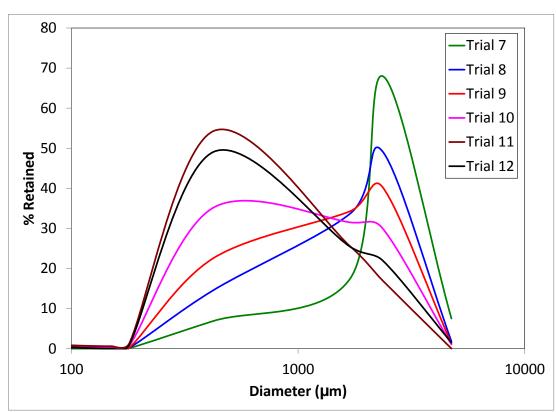

- Provide Insensitive replacements for TNT based explosives with similar performance
 - IMX-101 Insensitive replacement with comparable performance to TNT
 - IMX-104 Insensitive replacement with comparable performance to Composition B
 - Both currently qualified for use as main fill explosives
- Contain non-traditional ingredients

Laboratory Development Work – Overview

- Established process developed using Alternate Fluid
 - Alternate Fluid A fluorinated hydrocarbon which has similar properties to water and can be used in a place of water in multiple applications
 - Successfully used in the manufacture of aluminized PBX's at HSAAP
 - Utilized laboratory coating still and standard slurry coating techniques
 - Varied agitation rate to observe changes in particle size distribution
 - Ranged from 37.5% of maximum to 100% of maximum
- Analysis of resulting batches is promising
 - Composition, and thermal properties unchanged; bulk density is high

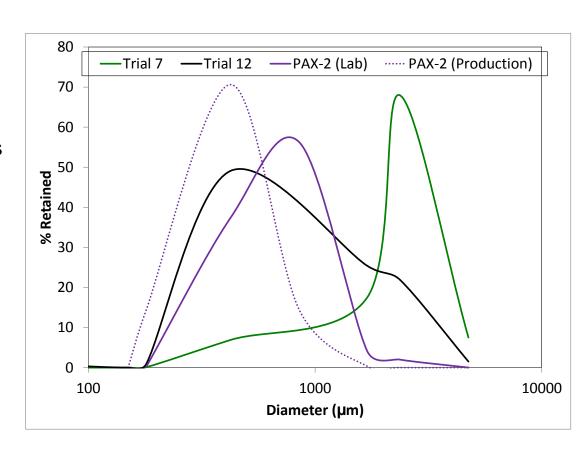
Laboratory Development Work – Analysis

Batch ID		Trial 7	Trial 8	Trial 9	Trial 10	Trial 11	Trial 12
Agitation Rate (% of Maximum)		37.5	50	62.5	75	87.5	100
Yield (%)		59.78	61.02	68.30	67.58	75.02	70.38
DNAN		Nominal	Nominal	Nominal	Nominal	Nominal	Nominal
RDX	RDX		Nominal	Nominal	Nominal	Nominal	Nominal
NTO		Nominal	Nominal	Nominal	Nominal	Nominal	Nominal
Melting Point (°	Melting Point (°C)		96.4	96.6	94.9	92.0	91.7
Exothermic Onse	Exothermic Onset (°C)		207	210	219	204	220
Bulk Density (g/cc)		0.926	0.885	0.962	0.926	0.962	0.961
	4	92.5	98.2	98.8	99.0	100	98.5
	8	24.5	49.0	58.5	69.0	83.0	76.5
	12	7.0	15.3	24.2	37.5	57.5	51.1
Screens	40	0.1	0.7	1.6	2.3	3.2	2.0
(% Pass)	80	0.0	0.5	1.4	1.6	1.9	1.1
	100	0.0	0.4	1.2	1.4	1.3	1.1
	200	0.0	0.1	0.4	0.3	0.4	0.6
	325	0.0	0.0	0.0	0.0	0.0	0.3



Laboratory Development Work – Granulation

- Effect on granulation observed with changes in agitation
- Slower agitation rates result in larger particle sizes
 - Trial 7 (Slow) 2400μm
 - Trial 9 (Medium) 1200μm
 - Trial 12 (Fast) 400μm
- Further work is required to optimize granulation



Laboratory Development Work – Granulation Comparison

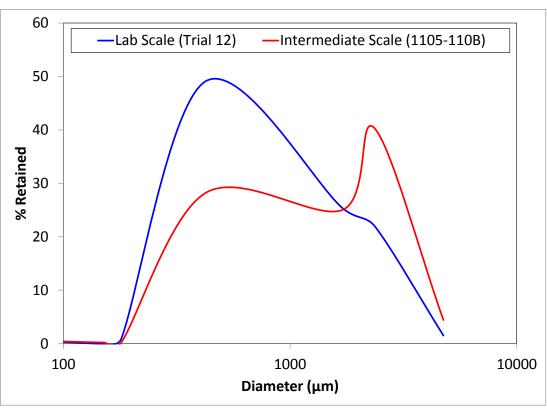
- Comparison of Granular IMX-104 to typical granulated product at HSAAP
- Largest and Smallest distributions compared to PAX-2 (Laboratory and Production)
 - 37.5% larger than PAX-2
 - 100% similar to PAX-2
- Promising result
 - Can make granular melt pour at similar particle sizes to other granular explosives
- Intermediate Scale Conditions Selected from these results

Intermediate Scale Up of Baseline Process – Overview

- Baseline process from trials was selected and scaled to a 50 pound scale
 - Tested for composition, thermal properties, bulk density, and granulation
 - Also tested for shock sensitivity via Large Scale Gap Test (LSGT)
- Analysis yielded promising results
 - Met specification for composition and thermal properties
 - Bulk density is high (greater than 0.9 g/cc)
 - Variation in granulation from small scale is negligible
 - Approximately 98% yield of product

Intermediate Scale Up of Baseline Process – Analysis

Batch ID		IMX-104 Specification		Trial 12	440E 440B
		Minimum	Maximum	1 Iriai 12	1105-110B
Yield (%)		70	100	70.38	98.41
DNAN		Nominal	Nominal	Nominal	Nominal
RDX		Nominal	Nominal	Nominal	Nominal
NTO		Nominal	Nominal	Nominal	Nominal
Melting Point (°C)		86	96	91.7	92.2
Exothermic Onset (C)	193	217	217	200
Bulk Density (g/cc	Bulk Density (g/cc)			0.961	0.926
Impact (cm)	Impact (cm)				>200
Friction (N)	Friction (N)		Exceed RDX CL5		231.7
Flowdex	Flowdex		20		16
Moisture (%)	Moisture (%)		0.2		0.0699
VTS (ml/g)			2		0.0846
	4			98.5	95.6
	8			76.5	55.3
Screens (% Pass)	12			51.1	30.3
	40			2.0	2.1
	80			1.1	1.9
	100			1.1	1.7
	200			0.6	1.2
	325			0.3	0.7



Intermediate Scale Up of Baseline Process – Granulation

- Semi Bi-Modal distribution for larger scale batch
 - Still broad distribution and similar to baseline lab scale batch
- Still usable and processed well
 - Average particle size is ~1100μm

Intermediate Scale Up of Baseline Process – LSGT

 Material from scale up trials tested in LSGT configuration against poured charges of standard IMX-104

Sample ID	IMX-104 (Flake)	IMX-104 (Granular)			
Manufacture Process	Large Scale (Melt cast)	Intermediate Scale		Lab Scale Baseline	
Charge Density (%TMD)	98	98	95	95	
50% Point (card gap)	125	126	158	156	
Pressure (kbar)	48.8	48.5	35.4	36.3	

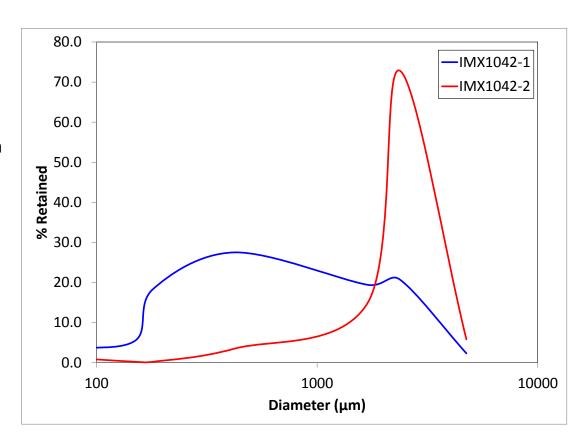
- No difference in sensitivity observed between melt cast and granular charges
- No difference in sensitivity observed between intermediate scale and lab scale material
- Composition B (201 220 cards; 16.9 20.5 kbar at 99%TMD)

Large Scale Manufacture – Overview

- Process scaled to a 500 pound scale
 - Tested for multiple properties
 - Final product to be delivered to customer
- Required Properties
 - Composition, thermal properties, and moisture
- Informational Properties
 - Impact, friction, flowdex, VTS, granulation, and bulk density

Large Scale Manufacture – Initial Run

Batch ID		IMX-104 Specification		IMV4042.4	IMV4042.2
		Minimum	Maximum	IMX1042-1	IMX1042-2
DNAN		Nominal	Nominal	High	High
RDX		Nominal	Nominal	Low	Nominal
NTO		Nominal	Nominal	Low	Low
Melting Point (°C)		86	96	90.3	90.2
Exothermic Onset (°C	;)	193	217	198	196
Bulk Density (g/cc)	Bulk Density (g/cc)			0.99	1.00
Impact (cm)		120		>200	>200
Fuinting (AI)			RDX CL5	156.3	242.2
Friction (N)		RDX CL5		182.8	182.8
Flowdex	Flowdex		20	32	18
Moisture (%)	Moisture (%)		0.2	0.019	0.006
VTS (ml/g)	VTS (ml/g)		2	0.08	0.04
	4			97.7	94.2
	8			76.9	21.3
Screens (% Pass)	12			57.5	6.3
	40			30.0	2.8
	80			11.7	2.6
	100			6.2	2.4
	200			2.7	1.3
	325			0.4	0.3


Large Scale Manufacture – Initial Run Granulation

IMX1042-1

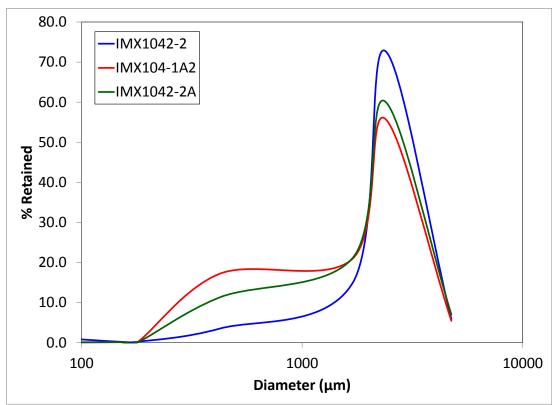
- Very fine and powder like
- Conditions adjusted for second batch to make material coarser
- Analysis of powder resulted in high NTO values

IMX1042-2

- Better granulation with narrow distribution
- Coarser than intermediate batch
- However still did not meet composition
- Water present in DNAN (~15%)
 - NTO lost in water as it is removed
 - High ratio of fluid to water during removal step (~10:1)

Large Scale Manufacture – Rework

Batch ID		IMX-104 Specification		IMV4042 4 A 2	IMV4042 2A
		Minimum	Maximum	IMX1042-1A2	IMX1042-2A
DNAN		Nominal	Nominal	Nominal	Nominal
RDX		Nominal	Nominal	Nominal	Nominal
NTO		Nominal	Nominal	Nominal	Nominal
Melting Point (°C)		86	96	90.4	90.5
Exothermic Onset (C)	193	217	206	204
Bulk Density (g/cc	Bulk Density (g/cc)			1.02	1.02
Impact (cm)		120		>200	>200
Frieties (N)		Exceed RDX CL5		254.6	209.1
Friction (N)		RDX CL5		164.5	164.5
Flowdex	Flowdex		20	18	20
Moisture (%)	Moisture (%)		0.2	0.03	0.04
VTS (ml/g)	VTS (ml/g)		2	0.07	0.09
	4			94.6	93.0
	8			38.6	32.7
Screens (% Pass)	12			17.6	11.5
	40			0.4	0.2
	80			0.2	0.1
	100			0.1	0.0
	200			0.0	0.0
	325			0.0	0.0

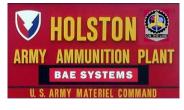


Large Scale Manufacture – Rework Granulation

- IMX1042-1A2
 - Now similar to IMX1042-2
 - Meets composition requirement
- IMX1042-2A
 - No major change to granulation
 - Meets composition requirement
- Material delivered for further evaluation and testing

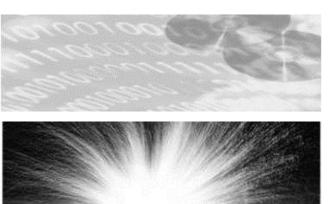
Conclusions and Future Work

- Process using alternate fluid has been successful in manufacturing granular versions of IMX-104
 - Laboratory process successfully scaled to 50 pound increment
 - Meet specification for composition with no change in thermal properties
 - Granulation can be controlled to obtain useable material
 - LSGT value not significantly effected by granulation process
 - Process further scaled to 500 pound batch size
 - Meets specification for composition with no change in thermal properties
 - Evidence that granulation can be controlled but requires additional work to optimize
 - Utilizes existing manufacturing infrastructure at HSAAP
 - Additional work is required to determine best method for removing water and minimizing NTO loss



Acknowledgements

- Mr. Matt Hathaway
- Dr. Jeremy Headrick
- Ms. Kelly Guntrum
- Ms. Robyn Wilmoth
- Mr. Chris Long


- Mr. Phillip Samuels
- Mr. Keyur Patel
- Mr. Omar Abbassi

Questions?

