

IM Melt-Cast Explosive Production Facility

Insensitive Munitions & Energetic Materials Technology Symposium 2013

Sean Newland*, David Sutherland, Ben Schreiber BAE SYSTEMS Ordnance Systems Inc. Holston Army Ammunition Plant Kingsport TN, USA

Acknowledgements

US ARMY PEO-AMMO

Product Director for Joint Services (PD-JS)

Yen Nguyen

- Project Management
- Funding Support

US ARMY RDECOM-ARDEC

Munitions Engineering & Technology Center (METC)

Paul Vinh, XueLing Zhao

- Engineering & Technical Lead
- Producibility Support

BAE SYSTEMS

- Engineering / Design Team
- Production Team

Outline

- Objective
- Background
- Design
- Process Flow Diagram
- Schedule
- Major Accomplishments / Status

Objective

 Build a new melt-cast explosive production facility at Holston Army Ammunition Plant (HSAAP) to manufacture insensitive munitions (IM) explosives more effectively and efficiently.

Background

- HSAAP, a Government-owned, contractor-operated (GOCO) facility, is the qualified NTIB source of IM melt-cast explosive formulations.
- Since the 1940's, RDX or HMX is blended with molten TNT to produce various classes of melt-cast explosives known as Cyclotol and Octol, respectively.
- A new generation of melt-cast explosives has been developed and fielded to comply with DOD 5000.2-R, which requires munitions to withstand unplanned stimuli to improve the warfighter survivability.
- To maintain consistent IM quality, these explosives, IMX-101 and IMX-104, have much tighter tolerances than their predecessors.
- The modernization effort is needed to manufacture IM explosives more effectively and efficiently.
- Additionally, this effort will provide HSAAP with the capability to meet future production requirements.

Design (1/2)

- Agitated Melt Kettles
 - Reduce cycle time
- Volumetric Feeders
 - Consistent feed rate for dry components
- Modified Hold-Up Kettle Discharge Valve
 - Pneumatic slide gate valve provides better flow control of molten product onto casting belt
 - Steam jacketed to keep product molten

Melt Kettle (Top) Feeder (Left) Discharge Valve (Bottom)

Abstract # 16244

Design (2/2)

- New Casting Belt System
 - Variable-speed belt controls cooling rate
 - Water and air cooling capability
 - Enclosed casting belt eliminates water exposure
 - Chiller system controls cooling water temperature
 - Recycle cooling water to reduce waste
- Improved Ventilation System
 - Reduce operators exposure
 - Consistent room temperature
- Plastic Sheeting
 - Cover walls and ceiling to prevent contamination

Process Flow Diagram

Equipment

Schedule

Major Accomplishments / Status

- Completed Tasks
 - Engineering & design
 - Facility modification
 - Equipment procurement & installation
 - Mechanical, electrical & interlock check-out
 - Inert trials
 - Operator training
- Planned Activities
 - First article production & testing