

2013 Insensitive Munitions & Energetic Materials Technology Symposium

A Realistic Thermal Mitigation Strategy for Solid Rocket Motors

Peter J. Cahill and Kenneth J. Graham Aerojet-Rocketdyne Culpeper, VA 22701

- Background
 - Description of the problem
- A Path Toward Controlled Release of Energy
- Aerojet Propellant Testing
 - Assessment of thermal properties
 - Assessment of burning rate
 - Assessment of mechanical properties
- Summary and Recommendations

The Cookoff Problem

- Solid Rocket Motors are, in essence, stored energy systems.
 - -Enough heating will eventually cause the release of this energy.
 - Large motors contain <u>a lot of energy</u>
 - Faster heating (fuel fire) usually causes a surface ignition of the energetic material.
 - Most of the material in large motors remains near normal environmental temperatures.
 - Confinement can lead to drastically different results.
 - Slow heating often results in extensive damage prior to ignition.
 - Ignition occurs in the bulk, due to self-heating.
 - Hardness of the material in this damaged state can influence reaction by adding to confinement.
 - Large motors do not behave like small motors.

AEROJET A ROCKETDYNE -

A Systematic Approach

A Systematic Approach to Cookoff

Define rocket motor operational requirements

In thermal threat
environments, develop a
new mode of operation and
establish requirements for
this mode

Test burning rate as a function of pressure and temperature

Test thermal properties of propellant and inert materials

Test mechanical/bond properties of propellant and inert materials as a function of temperature and strain rate

Requirements met?

Temperatures must be expanded and models improved.

Modified Slow Cookoff Visualization Test

Propellant Burning Rates at Elevated Temperatures

Propellant Burning Rates at Elevated Temperatures

- Pressurization is controlled:
 - -Burning surface area
 - dependent on grain design and surface regression of the propellant
 - -Ballistic properties of the propellant
 - dependent on operating pressure & temperature
 - Venting
- Controlled venting can prevent the feedback loop than ensues from high-temperature propellant
 - Unvented, higher temperatures cause higher burning rates, which cause higher pressures, which cause exponentially higher burning rates.
- Controlled venting can cause the system to operate at lower pressures and prevent the system from becoming propulsive.

What about the Mechanical Properties above 100°C?

- Assessing structural integrity is not as simple as loading and temperature.
- Constitutive models are required which take into account additional crosslinking of polymers which may occur at IM mitigation temperatures.

Conclusions and Recommendations

- The system must be considered when seeking an IM solution.
- Researchers must always assess whether the right test is being performed for the information desired.
 - -Cookoff reaction violence may not scale.
- If we understand the properties of the materials involved above the normal operation temperatures, we can design solutions which satisfy system safety requirements and reduce the consequence of an IM event.