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« Solid Rocket Motors are, in essence, stored energy
systems.
—Enough heating will eventually cause the release of this
energy.

«Large motors contain a lot of energy

—Faster heating (fuel fire) usually causes a surface ignition of
the energetic material.

*Most of the material in large motors remains near normal
environmental temperatures.

« Confinement can lead to drastically different results.

—Slow heating often results in extensive damage prior to
Ignition.
*Ignition occurs in the bulk, due to self-heating.

Hardness of the material in this damaged state can influence
reaction by adding to confinement.

Large motors do not behave like small motors.
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A Systematic Approach
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Define rocket motor operationeh In thermal threat
requirements environments, develop a
new mode of operation and
establish requirements for
this mode
. Test thermal Test mechanical/bond
Test burning rate as a : :
function of pressure properties qf properties of propellant and
propellant and inert inert materials as a function of
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materials temperature and strain rate
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Propellant Growth and Swelling
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In Aerojet Toaster Oven Slow Cookoff Visualization
160% e Aluminized, HTPB, AP-Composite Propellant at 3.3%C/hr B A I
am Aluminized, HTPB, AP-Cormposite Propellant at 25°C/hr to 180°C hold : '
o e A\luminized, HTPB, AP-Composite Propellant With Iron Oxide at 120°C/hr i i i ! !
140% s Aluminized , HTPB, AP-Composite Propellant with Nitramine at 120°C/hr o ;
Aluminized, HTPB, AP-Composite Propellant with Catocene at 120°C/hr i
e Aluminized , HTPB, AP-Composite Propellant with Energetic Plasticizer at 3.3°C/hr i :
120% s Alumninized , HTPE, AP Composite Propellant with Energetic Plasticizer and Nitramine at 3.3°C/hr "“:L """"""""""" O R
ssmmmReduced-Smoke Composite Propellant at B6°C/hr 5
=== High-Energy Minimum Smaoke at 3.3°C/hr i
;\? 100 74 S S N A A A O O R . AR O O P O, [ L Al g 0
=
(o]
B 80% e b
c
@
=3
W B0% e e e R b S e
e S T o E e o
20%
If propellant is
0% ignited before the
50 70 90 110 130 150 170 190 210 onset of swelling,
Temperature (°C) a controlled
burning reaction

is achievable.




Pr/opellant Burning Rates at Elevated Temperatures
(

AFROJET
ROCKETDYNE

Relative Burning Rates of Various Propellants with Respect to
Temperature at a Constant Pressure (P1)
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Relative Burning Rates of Various Propellants with Respect to
Temperature at a Constant Pressure (P2 = 1.5%P1)
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 Pressurization is controlled:

—Burning surface area

dependent on grain design and surface regression of the
propellant

—Ballistic properties of the propellant
dependent on operating pressure & temperature
—Venting

e Controlled venting can prevent the feedback loop than
ensues from high-temperature propellant

—Unvented, higher temperatures cause higher burning
rates, which cause higher pressures, which cause
exponentially higher burning rates.

« Controlled venting can cause the system to operate at
lower pressures and prevent the system from
becoming propulsive.
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* Assessing structural
Integrity is not as simple
as loading and
temperature.

e Constitutive models are
required which take into
account additional cross-
linking of polymers which Hardening of Material above 100°C

may occur at IM £ 22°C 10 53°C
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 The system must be considered when seeking an IM
solution.

* Researchers must always assess whether the right
test is being performed for the information desired.

—Cookoff reaction violence may not scale.

* If we understand the properties of the materials
Involved above the normal operation temperatures, we
can design solutions which satisfy system safety
requirements and reduce the consequence of an IM

event.

11



