

How ISR Complements Precision Weapons & The Unmanned Systems Integrated Roadmap

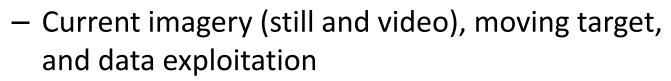
Dyke Weatherington Deputy Director OUSD(AT&L)/S&TS-UW&ISR

Unclassified Cleared for Open Publication: 13-S-1709

Briefing to Precision Strike Tech Symposium on 15 Oct 2013

Example of Bad ISR

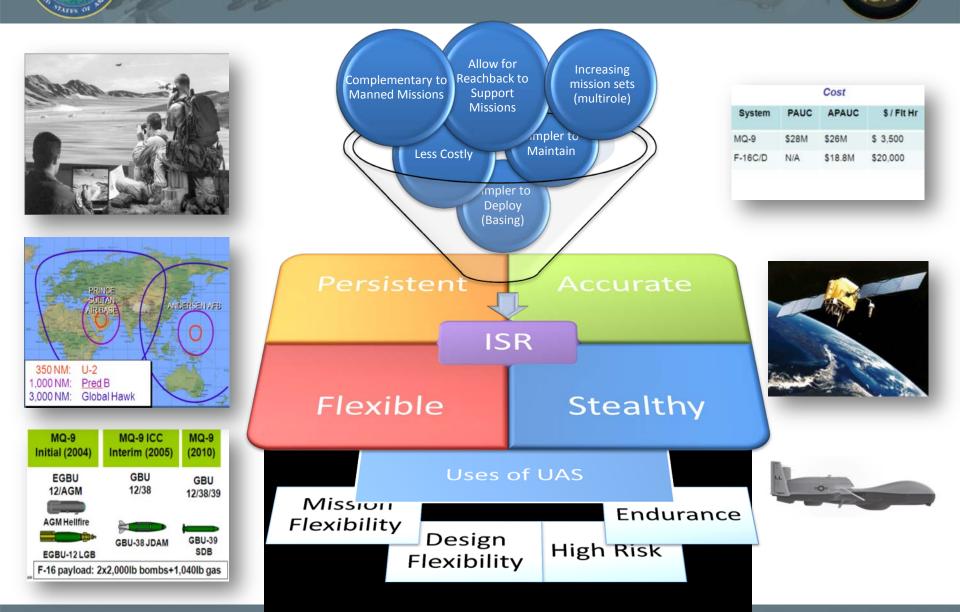
In 1999, during Operation Allied Force, five US JDAM bombs hit the People's Republic of China embassy in Belgrade, Yugoslavia, killing three Chinese reporters.


- A warehouse for a Yugoslav government agency suspected of arms proliferation activities targeted
- Target was checked against 'no-strike' databases
- NATO and US officers who had checked the databases the morning after the attack found the embassy listed at its correct location
- SECDEF: one of our planes attacked the wrong target because the bombing instructions were based on an outdated map (CIA built target folder/staffed to President)

http://en.wikipedia.org/wiki/U.S._bombing_of_the_Chinese_embassy_in_Belgrade

Lessons Learned

- Need to put precision weapons on target
- Must have good ISR to do so:
 - Requires accurate georeference digital data
 - Impacts everything from target mission development maps to GPS

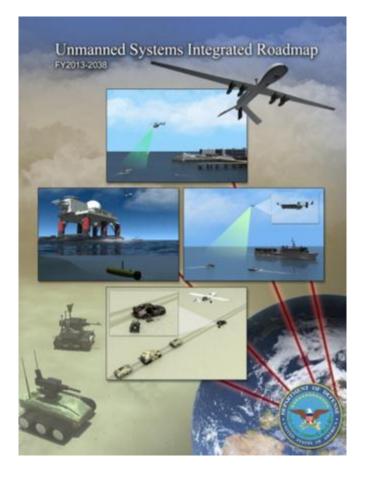


Location updates (situational awareness and environmental understanding)

The Good News UAS can conduct ISR missions to improve our knowledge in these areas

Benefits of Unmanned Systems

Joint Concept of Operations For Unmanned Aircraft Systems, Nov 2008, Chg 1, Apr 2010



Unmanned Systems Have Challenges Unmanned Systems Integrated Roadmap

OVERVIEW

- Vision and Scope
- Budgetary Environment
- Policy Considerations
- Unmanned Missions
- Technologies for Unmanned Systems
- Operating Environment
- Logistics and Sustainment
- Unmanned Training
- International Cooperation
- Summary and Final Thoughts

Cleared for Open Publication: 13-S-1709

Why This Matters?

Unmanned Aircraft Systems are vital components for Combatant Commanders.

This is due to:

- Dramatic increases in battery life, computer processing power, and communications abilities
- Reduction in size and complexity of sensors
- Improvements in reliability, maintainability, autonomy, and operator interfaces

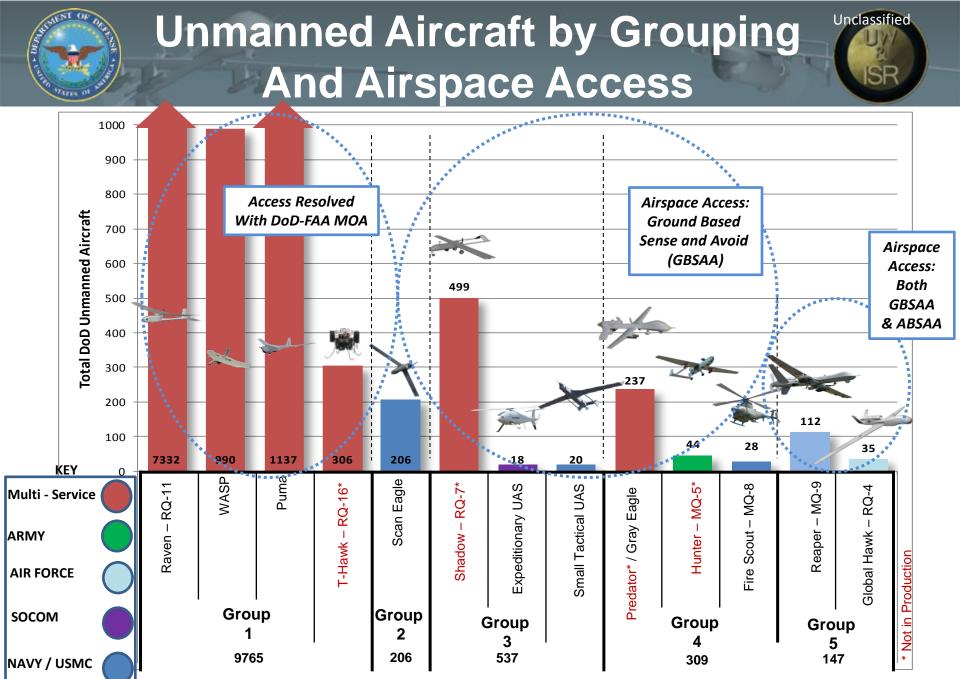
Unclassified

Cleared for Open Publication: 13-S-1709

UAS TF Chartered Goal:

Serve as Department of Defense's lead activity for development and promulgation of Unmanned Systems Roadmap

- A technical vision outlining the next 25 year span
- Overall goal: Sustained, affordable, rapid integration and application of unmanned systems
- Outlines technologies and timelines for DoD and industry to pursue in technical challenge solution and capability development



DoD Unmanned Systems 2014 PB (Presented in Roadmap)

Unmanned Funding (\$ Mil/PB14)

FYDP		2014	2015	2016	2017	2018	Total
	RDTE	1189.4	1674.0	1521.4	1189.4	1087.9	6662.2
Air	Proc	1505.5	2010.2	1843.5	1870.7	2152.8	9382.7
	ОМ	1080.9	1135.2	1102.7	1156.9	1178.5	5654.1
Domain Tot	al	3775.9	4819.4	4467.6	4217.0	4419.3	21699.1
FYDP		2014	2015	2016	2017	2018	Total
	RDTE	6.5	19.1	13.6	11.1	10.6	60.9
Ground	Proc	6.5	27.9	30.7	42.6	55.4	163.1
	ОМ	0.0	0.0	0.0	0.0	0.0	0.0
Domain Total		13.0	47.0	44.3	53.7	66.0	223.9
FYDP					0045		
FIDP		2014	2015	2016	2017	2018	Total
FTUP	RDTE	2014 62.8	2015 54.8	2016 66.1	2017 81.0	2018 87.2	Total 351.9
Maritime	RDTE Proc						
		62.8	54.8	66.1	81.0	87.2	351.9
	Proc OM	62.8 104.0	54.8 184.8	66.1 160.1	81.0 158.1	87.2 101.1	351.9 708.2
Maritime	Proc OM	62.8 104.0 163.4	54.8 184.8 170.3	66.1 160.1 182.4	81.0 158.1 190.5	87.2 101.1 193.6	351.9 708.2 900.2
Maritime Domain Tot	Proc OM	62.8 104.0 163.4 330.2	54.8 184.8 170.3 409.8	66.1 160.1 182.4 408.6	81.0 158.1 190.5 429.7	87.2 101.1 193.6 381.8	351.9 708.2 900.2 1960.2
Maritime Domain Tot FYDP	Proc OM al	62.8 104.0 163.4 330.2 2014	54.8 184.8 170.3 409.8 2015	66.1 160.1 182.4 408.6 2016	81.0 158.1 190.5 429.7 2017	87.2 101.1 193.6 381.8 2018	351.9 708.2 900.2 1960.2 Total
Maritime Domain Tot FYDP All	Proc OM al RDTE	62.8 104.0 163.4 330.2 2014 1,258.7	54.8 184.8 170.3 409.8 2015 1,747.9	66.1 160.1 182.4 408.6 2016 1,601.1	81.0 158.1 190.5 429.7 2017 1,281.5	87.2 101.1 193.6 381.8 2018 1,185.7	351.9 708.2 900.2 1960.2 Total 7,075.0

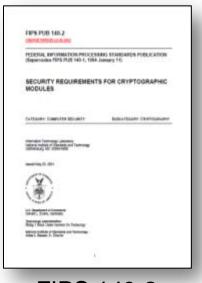
Cleared for Open Publication: 13-S-1709

Cleared for Open Publication: 13-S-1709

Unclassified

9

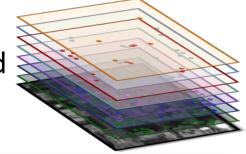
Autonomy


- A system operating under human control is not autonomous
- The potential for improving capability and reducing cost through automation presents great promise, and also raises challenging questions when applying automation to specific actions or functions
- Human-systems engineering is being rigorously applied to decompose, identify, and implement effective interfaces to support responsive command and control for safe and effective operations
- Unmanned systems must be designed and tested to perform tasks in a safe and reliable manner, and operate seamlessly
- Autonomous functions in UAS include critical flight operations of automated takeoff and landing, and recognition of lost communication requiring implementation of return to base procedures
- For armed platforms, DoD Directive 3000.09,22 Autonomy in Weapon Systems, establishes policy for development and use of autonomous capabilities

Encryption

- Critical for protecting UAS operations, data, and other information
- <u>DoD specifies encryption and key management for UAS C2</u> <u>communications and both still and motion imagery</u>
- Type 1 validated encryption is required for processing classified communications, and Federal Information Processing Standard (FIPS) 140-2 validated encryption at a minimum must be used for processing unclassified communications
- DoD Instruction (DoDI) S-4660.04 Encryption of Imagery Transmitted by Airborne Systems and Unmanned Aircraft Control Communications also specifies further encryption and key management methods, such as the use of keys provided by the National Security Agency (NSA), to enable interoperability
- Future: quicker and interoperable--Suite B cryptography is defined by NSA: <u>http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml</u>

Unclassified


FIPS 140-2

Data Exploitation

- Data and sensor resolution and availability are increasing
 - Rapid analysis is a necessity—many analysts
- Challenge—need capability to timely exploit large data volume
 - While exacerbated by both ends of transmission link
 - Huge volumes must be downsized before transmission or data highway must be increased in size and speed
- Analysts need formatted and prioritized archived data
 - Allows tool use to take advantage of data standardization
- Data must be immediately accessible
 - By both anticipated and unanticipated analysts and consumers

Cleared for Open Publication: 13-S-1709

Innovation

- National Military Strategy and Joint Plans
 - Innovation
 - Affordability
- To meet mission needs
 - Fund capability innovative improvements to indigenous technologies
 - As simple as modifying a sensor to improve data flow or applying standard architectures for interoperability
- Development CONOPS pursuing:
 - Smaller, Lighter, Faster, and m
 - More maneuverable systems that take on higher risk missions

Manned-Unmanned Teaming

- A smaller, more agile manned-unmanned systems force of the near future will enable the DoD to mobilize quickly to deter and defeat aggression by projecting power despite A2/AD challenges.
- Key MUM-T capabilities will include:
 - Defeating explosive ground surface, sub surface (tunnel), and sea hazards from greater standoff distances.
 - Assuring mobility to support multiple points of entry.
 - Enabling movement and maneuver for projecting offensive operations.
 - Establish and sustain the shore lines of communications (LOC) required to follow forces and logistics.
 - Protection for austere combat outposts.
 - Persistent surveillance to detect and neutralize threats and hazards within single to triple canopy and urban terrain.

Areas for Technical Improvement & Enhancement

Six Areas reflecting shift in strategic priorities and emphasis on unmanned system lifecycle cost

- Interoperability and Modularity
- Communication systems, spectrum, and resilience
- Security (research & intelligence/technology

protection (RITP))

- Persistent resilience
- Autonomy and cognitive behavior
- Weaponry

Interoperability

Problem

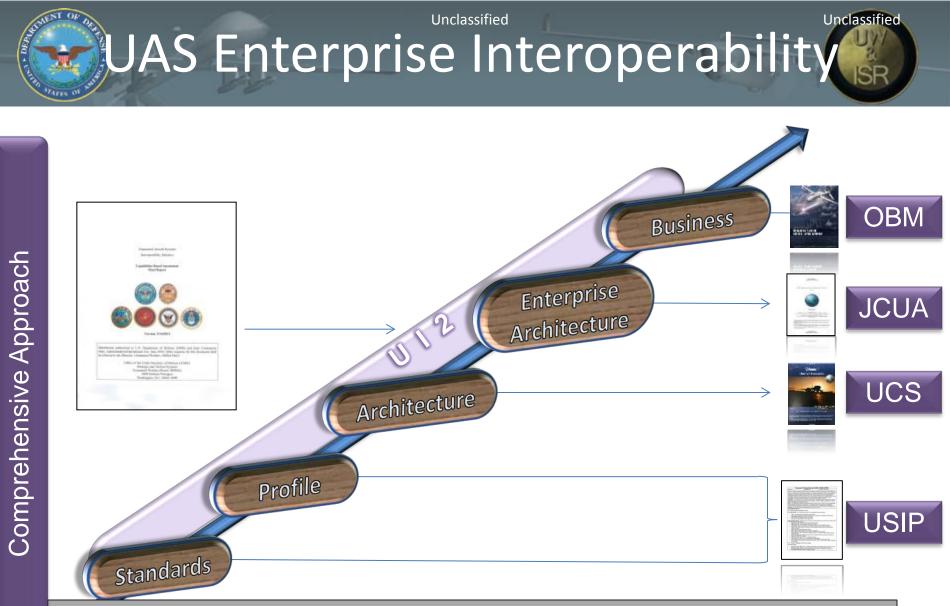
Solution

- Processing and algorithm development outpaces ability to transition upgrades to fielded platforms
- Continuous sensor/comm evolution due to leveraging commercial process and standards
- Technology refresh presents intra-platform (modularity) and inter-platform challenges (interoperability) to enduring

Opportunity to minimize future lifecycle costs, reduced force structure requirements and adapt rapidly to changing threats or new available technologies through:

- <u>Interoperable interfaces</u> for enhanced modularity
- Interoperable cross domain data sharing

Modularity


Problem

- Upgrading existing proprietary components may be both expensive and logistically unfeasible
- Closed development approaches result in unfavorable characteristics that impede technical progress and the adoption of new capabilities

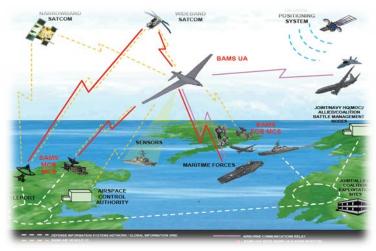
Solution

- Unmanned systems must be modular so the same or at least similar components can be used in the same type or different systems
- Plug-and-play use of different sensors on the vehicle and supporting systems

Multilayered approach required to enable enterprise interoperability UI2 identifies joint requirements across all layers

Cleared for Open Publication: 13-S-1709

Areas for Technical Improvement & Enhancement


Communication Systems, Spectrum, and Resilience

Problem--communication challenges:

- UAS Bandwidth--Data Volume
- Electromagnetic Spectrum--Spectrum Assignment
- C2 Link Availability--Radio Frequency Resilience

Environment--Infrastructure Issues:

- Poor Global Connectivity
- Costly Satellite and Network Contracts
- Stovepipe Infrastructures
- Poor Information Sharing

Areas for Technical Improvement & Enhancement

Communication Systems, Spectrum, and Resilience

Key Assumptions:

- Programmed Resources Will Be Limited
- C4 Infrastructure Demand Is Growing
- Operating Environment Will Be Challenged
- Open Standards Improve Interoperability

Solution:

- Centralizing unmanned systems enterprise management
- Interoperability through enforcement of a wider use of open standards (e.g., CDL) and interface definitions
- Standardize on common IP modems
- Improved procurement of commercial COMSAT services (e.g., FSCA leases, point-of-presence access to commercial gateways)

- Enterprise Capabilities Improve Efficiency
- Representatives maintain equities in national and international forums
- Continue requirements management for communication resilience technologies
- Deepen pool of communication resources through use of WGS systems and leveraging aerial networking capabilities (e.g. JALN and its GIG injection points.)
- Improved resiliency through use of multiband terminals and common interfaces
- Specific planned technology advances shown in figure.

Operating Environment

Technical areas such as automation, maneuver, communication options, etc. so as to accomplish the mission. Emphasis that every aspect of the operating environment, including the <u>physical and</u> <u>regulatory</u>, should be <u>incorporated in all</u> <u>acquisition life cycle stages</u>. Guidance is currently available from each of the military departments although the requirements and standards must still be developed to support new capabilities.

<u>Example</u>: Ground-based Sense and Avoid at Fort Hood, TX; a success story for UAS operating capability

"Units always had to go somewhere else to fly. This is normalizing UAS operations in this airspace."

-Lt. Col. Dave Rogers, deputy brigade commander, 21st Cav., 6 March 2013

Safe Navigation through NAS

Endstate

- Accomplishing Training Mission
- Reduced Training Costs
- Improved Soldiers Morale

Cleared for Open Publication: 13-S-1709

Logistics and Sustainment

Working to transition from supporting the warfighters' immediate capability requirements to creating an affordable, long-term sustainment environment utilizing a flexible blend of original equipment manufacturer (OEM), oth contractors, and organic support to meet logistics support objectives.

Challenges:

- Sustaining Non-Programs of Record
- Limited RAM Data
- Delayed core logistics capability requirements
- **Transition from Contract Logistics** Support for Life to Organic capabilities
- Immature or lack of lifecycle sustainment planning

Commod	ity	CCAD	LEAD	TYAD	FRCE	FRC SE	FRC SW	OC-ALC	WR-ALC	OO-AL
Airframes,	/Composite	A				N	N		N. AF	A, AF
Engine/En	gine Components	A.		1	N	N	-	A.N. AF		
Sensors (E	lectro-optic)			А.		A, N, AR			AF*	
Sensors (Ir	nfared)			Α		A. N. AF			AF*	
Hydraulics	6	A			N.	11	N	AF.		A. N. AF
Pneumatic	cs	A			N	1.		A.N. AF		A
Landing Ge	ear	A,	2	1.1.1.1.1.1.1	N	.14	14		1.1	A.N. AF
Ground St	ation	Δ.		A.N. AF			N		AF .	AF
Ground Da	ata Link			A.N.AF			N		AF	AF
Avionics				A	N	N	N		A, N, AF	AF*
Environme	ental		A		N	N	N	A, N, AF	-	
Fuel Syste	m Components	A			N	N	N.	A, N, AF	AL AL	
Flight Cont	trols	A			N	N	N		A.N. AF	
Targeting				A		A, N, 28				
Targeting ((laser)		1			A, N, AF	a		2	
Radar (gro	und)			A, N, AF						
Radar (air)	1			At			N		N, AF	
Software				RSA		(NAWO)			(AF)	C AF
Communie	cations (Ground)			A. N. AF		10.0	7N		AE.	
Propellers	in and second sec	A		Sector Sector					A, N, AF	
	Service Workload Designation	ma: A = Army	AF =	Air Force	N = Navy	y * = worklos	ds fall in on	asisting re-	pair capabili	tγ
Army	CCAD = Corpus Christi Army Depot		item of B Itemny Av		- Tobyte	nna Army	RSA = Reds Arsenal	tone	Green = App	
Navy	Navy FRC E = Heat Readiness FRC SE = 1 Center Seat Center So			t Center Southwest		NAWC = Naval Air Warfare Center		Red Orde = Considering		
Air Force OC-ALC = Oklahoma City OC Air Logistics Complex Lo		CO-ALC = Oge	-ALC = Ogden Air gistics Complex		WR-ALC = Warner Robins Air Logistics Complex		Af = Air Force Sustainment Activity		Current: 1/30/13	

UAS Organic Depot Maintenance Sources of Repair

Example: Organic Depot Maintenance Sources of Repair Approved Consolidations

	components						
	Sensors (Electro-optic)			A.		A, N, AF	
ner	Sensors (Infared)			A		A. N. AF	
	Hydraulics	A			N.	PK .	l
	Pneumatics	A			N	1	l
	Landing Gear	A,		1.000	N	N	l
	Ground Station	A.	A.	A.N. AF			l
	Ground Data Link			ANAF			I

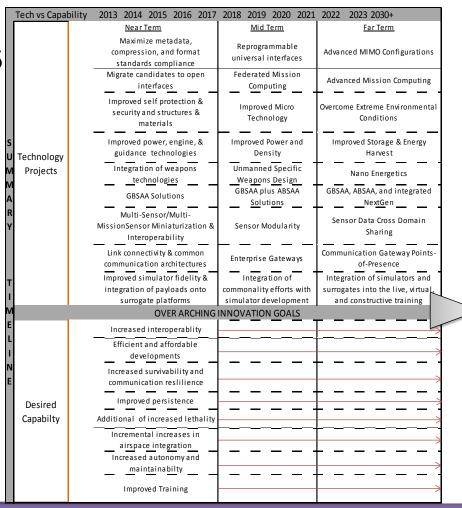
Unclassified **Training**

Training issues are similar to the logistics environment. Proper mix among the live, virtual, and constructive domains must be put into place to ensure that the asymmetric advantages offered by unmanned systems can be employed in future operations.

Goals	2013 2014 2015 2016	2017 2018	2019 2020	2021 2022	2023 2030+
Technology Projects	<u>Near-Term</u> : Improved simulator fidelity & integration of payloads onto surrogate platforms.	<u>Mid-Term</u> : Integration of commonality efforts with simulator development.		Far-Term: Integration of simulators and surrogates into the livr, virtual, and constructive training environments.	
Capability Needs					

Challenges:

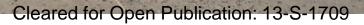
- Resource Availability
- Policy
- Regulatory


Example: UAS Training Study and subsequent UAS Training Strategy are in progress.

Cleared for Open Publication: 13-S-1709

Summary

- Fiscal Expectations
- Roadmap Release
- Final Thoughts



Visiting http://www.acq.osd.mil/sts/organization/uw.shtml for the latest updates.

Cleared for Open Publication: 13-S-1709

National Strategy Expanded

Roadmap Tech Timeline Expanded

	Tech vs Capab	oility 2013 2014 2015 2016 201	7 2018 2019 2020 2021	2022 2023 2030+
		<u>Near Term</u>	<u>Mid Term</u>	<u>Far Term</u>
		Maximize metadata, compression, and format <u>standards complian</u> ce	Reprogrammable universal interfaces	Advanced MIMO Configurations
		Migrate candidates to open interfaces	Federated Mission Computing	Advanced Mission Computing
		Improved self protection & security and structures & materials	Improved Micro Technology	Overcome Extreme Environmental Conditions
s U	Technology	Improved power, engine, & guidance technologies	Improved Power and Density	Improved Storage & Energy Harvest
M	Projects	Integration of weapons technologies	Unmanned Specific Weapons Design	Nano Energetics
A		GBSAA Solutions	GBSAA plus ABSAA Solutions	GBSAA, ABSAA, and integratedNextGen
R Y		Multi-Sensor/Multi- MissionSensor Miniaturization 8 Interoperability	Sensor Modularity	Sensor Data Cross Domain Sharing
		Link connectivity & common communication architectures	Enterprise Gateways	Communication Gateway Points- of-Presence
т		Improved simulator fidelity &	Integration of	Integration of simulators and
		integration of payloads onto	commonality efforts with	surrogates into the live, virtual,
I		surrogate platforms	simulator development	and constructive training
M		OVER ARCHING	INNOVATION GOALS	
E		Increased interoperablity		

Areas for Technical Improvement & Enhancement

Communication Systems, Spectrum, and Resilience

Communications, Networks, and Electromagnetic Systems

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2030+

	-		
	Near Term: Unmanned System	Mid-Term: Multi-focused, Super	Long Term: Adv. Error
	connectivity to Teleport sites	cooled Antennas, Conformal	Control, Further Adv.
	supporting Africa and Pacific, Global	phased array antennas,	MIMO configurations,
	UVDS capabilities, Secure Micro Digital	standard multi-band	Network Path Diversity,
	Datalink, DSA, WNaN, Chip Count	transceivers, cloud-enabled	Optical
	reduction, Ka-band terminals, Single	enterprise data centers,	Communications,
	Chip T/R, GaN technology, Eff. FEC, "Dial-	transition BLOS gate way	commercial gateway
Desired Capabilty	a-rate" CDL, Adv. MIMO, consolidated	capabilities to enterprise	points-of-presence with
	gateway sites under common	gateway sites supplemented	Digital IF inter-facility
	communications architecture,	with dedicated gateways	transport.
	aggregate COMSATCOM leasing under	outside coverage areas, tech	
	FCSA.	refresh terminal upgrades to	
		Ka-Band or multi-band	
		hardware.	