

Manufacturing Solutions

John F Dobstetter Business Development Manager Direct Digital Manufacturing

Overview

- Additive overview
- Tooling applications
- End use part applications
- Tooling for composites

Additive Mfg Sweet Spot

High Complexity, Low Quantity

- Specialty End Use Parts
- Tooling!

Product Lifecycle Applications

FDM Materials

Strength vs Heat Deflection Flex Modulus vs Flex Strength 360 **ULTEM 9085** 350 400 PPSF Flexural Modulus [KSI] Heat Deflection [[°]F] 350 340 ABS ULTEM 9085 🔽 330 300 PC PC-ISO PC 250 320 **PPSF** PC-ISO 200 310 $\langle \rangle$ ABS 300 150 6 10 10 12 14 16 18 5 8 9 8 7 Flexural Strength [KSI] Tensile Strength [KSI] @ AMB

Metal Forming Tools

US Naval Air Systems Command Depots

AIR NAV

Hydro Form

Rubber Pad

Stretch Form

Tube Form

Metal Forming

Mold Tools

High Temp Washout Core Molds

Silicone Gasket Mold

Reconfigurable Over Mold

Injection Molds

Part description	Test part
Material injected	РР
Special features	Living hinge, bosses, press fit
comments	• 100 parts out of 2 tools
	Low pressure developed
	Tools did not fail
Material	РР
Nozzle Temp [F]	428
Inj. Pressure [psi]	8700
Hold Pressure [psi]	4351
Holding time [s]	8

180

Cooling with air

pressure

cycle time [s]

Comments

Injection Molds

	Cost (US\$)	Turnaround (days)	comments
P20 Steel	3400	18	estimate
Aluminum	1670	7	estimate
ABS-like	960	22 Hr. (1 day)	Connex 500 Consumption: 810gr RGD535 1408gr RGD515 150gr support

Time saving: 700-1800% Cost savings:

- 43% over aluminum
- 72% over steel

Trim & Drill Tools

Thermoform Tools

Production

Trials

Assembly Aids

End Use Parts – Light Aircraft **Stratasys**

Picture courtesy of

Unmanned Systems

Pictures courtesy of Draganfly

Pictures courtesy of Leptron

Pictures courtesy of Embry-Riddle

15

FDM Composite Tooling

FDM Composite Applications

Coordinated Tool Family

- Application
 - UAV wing box
- Benefits
 - Scaled tool size and qty to meet rate demands
 - Digitally mastered tool family
 - Concurrent tool fabrication

Model Based Definition

Completed Cover

Female Co-Bond Tool

Finished Part

Dynamic Flex Test

FDM Material Application Map

FDM Service	AMB 80)°C 120	°C 175°C
Materials	AMB 18	0°F 250	°F 350°F
ABS	 Low Temp Tools Low Temp Consumable Cores Master Patterns 		
SR30/SR100/S1	SR30 Soluble Cores	SR100 Soluble Cores	•ULTEM S1 Break Out Cores
PC	 Low Temp Cure Tools & Consumable Master Patterns Trim & Drill Tools 	Cores	
ULTEM 9085	Med Temp Cure Tools & Consumable High Strength Trim & Drill Tools	Cores	•Caution above 150°C/300°F
PPSF	•High Temp Tools & Consumable Core	9S	
ABS Master & Tooling Composites	•High Temp CTE Matched Tools		200°C (400°F) Max
ABS Master & Nevada Composites	 High Temp CTE Matched Tools High Temp CTE Matched Soluble Content 	res	371°C (700°F)

Soluble Cores

- Dissolve FDM soluble core
 - WaterWorks bath solution
 - Heated tank ~ $140^{\circ}F$ ($60^{\circ}C$)
 - Agitation & circulation recommended
 - Rinse composite part
 - Duration is dependent on geometry
- Compatible with most epoxy resins
 - WaterWorks has been demonstrated to attack some polyester resins
 - Tests to confirm resin compatibility are recommended

Break Out Cores

Large Hybrid Cores

- Mandrel Specifications
 - Hybrid mandrel
 - Aluminum main shaft
 - ~ 6' (15.2cm) long x 9" (22.9cm) dia
 - FDM soluble core ends
 - 24" (61cm) diameter x 12" (30.5cm) tall
 - 12 lb normal load for tow winding
 - 200°F (121°C) Cure
- Lessons Learned
 - Washout process is a design driver
 - Part rotation during cure evens out loads during cure cycle

Hybrid Break Out Core

- Aluminum/ULTEM-S1 Hybrid
 - Reusable aluminum sections
 - ULTEM-S1 trapped section
 - Build time minutes
 - Minimal costs
 - Size mitigated CTE mismatch

Automotive Applications

SR-100 Soluble Tool Material

- Produce 250°F cured composite parts
- 80 psi pressure
- Supports complex geometries

Thin Skin Tooling

- Design
 - Ultem material
 - 6mm thick
 - 5hrs build time
 - Tool surfaced with epoxy
 - Vibratory polished hands off for 1 hr

- Use
 - Released surface
 - Lay up part
 - Envelop bagging balances forces
 - Cured at 250F, 80 psi
 - Caution: geometry sensitive

Larger Scale Tooling

Lockheed Martin Layup Tool

Boeing FDM C-channel Mandrel

LOCKHEED MARTIN

Hybrid Assemblies

- First Robotics Team #3824
 - Hardin Valley Academy
 - RoHawktics
 - Sponsored by ORNL Manufacturing Demonstration Facility (MDF)
- Hybrid Assembly
 - FDM Fittings
 - Pultruded Rods
 - Filament winding
- Benefits
 - Additive is great at relatively smaller more complex
 - Carbon fiber is great at long, simple, light weight, high strength structures
 - Combining provides strengths of both technologies

First Robotic Team #3824

- Application
 - Robot Chassis
 - Stiff/light weight
- Solution
 - FDM light weight end pieces with critical interfaces
 - Pultruded carbon rods for spanners
 - Filament wound for bonding and strength/stiffness

Results

Dort	Longth	AM Only		Hybrid	
Fall	Length	Fab Time	Weight	Fab Time	Weight
Long Beam	54"	90 hrs	14.64 lbs	15.5 hrs	3.86 lbs
Short Beam	21"	24 hrs	7.44 lbs	8.25 hrs	1.77 lbs

- Additive has a growing role in manufacturing
- Stratasys provides solutions over product life cycle
- Enabling a wide spectrum of tooling options
- Performance materials enable end use parts
- Real solutions for composite tooling
- R&D efforts expand validated applications

John Dobstetter Stratasys DDM Group Business Development Manager John.dobstetter@stratasys.com 732-495-4027 o 612-963-2395 c

Back Up Slides

Thin Skin Tooling

- Tool
 - Thickness 8mm (0.31")
 - Material PPSF
- Lay Up
 - Aramid fiber, 108g/m²
 - 180C epoxy resin
- Results
 - Final tolerance: ±0.25 (0.010") on
 350mm (12")
 - No spring back effect on "C" shape"

Aerospace Application

- Application
 - Inlet duct, size = 0.6m x 0.6m x 0.9m (2'x2'x3')
 - Trapped geometry
- Solution
 - 180°C OoA composite system
 - 2 hr 130°C (266°F) initial cure
 - 2 hr freestanding 180°C (356°C) post cure
 - ULTEM S1 break out core
- Results
 - Tool build time < 8 days
 - Reduced tool lead time to < 14 days
 - Tool maintained less than +/-1 mm (0.040") accuracy

Project worked with NGC under AFRL Call 6 Program

RTHROP GRUMMA

Break Out Core Application

Tool Preparation

Out of Autoclave Composite Layup

Debulking

Envelope Bagging

Cured Composite Structure

Tool Break Out

Injection Molds

Industry	Automotive
Part description	Steering wheel connector
Material injected	Wax, HDPE
Special features	Highly complex. Thin walls
comments	10 parts molded, long cycle time

Material	HDPE
Nozzle Temp [F]	365
Inj. Pressure [psi]	8700
Hold Pressure [psi]	4351
cycle time [s]	360
Clamping force [kN]	300

Т

Injection Molds

Industry	Consumer goods
Part description	Ice cream spoons
Material injected	РР
Special features	6 cavity mold
comments	Injected in different colors

	Cost (US\$)	Turnaround (days)	comments
P20 Steel	3200	30	
Aluminum	1400	30	
ABS-like	785	7 hr. (1 day)	Connex 260 Consumption: 400gr RGD535 480gr RGD515 100gr support

Time saving: 3000% Cost savings:

- 44% over aluminum
- 75% over steel

Solution Breakdown

Item/ Material Group	Α	В	С	D
Materials	PP, PE, PS, ABS, TPE	• PP +GF, PA, POM, PC+ABS, PVC	• PA+GF, PC, POM+GF	• PC+GF, PPO, PPS
Geometry	 Accuracy up to 0.1mm Thin walls down to 0.5mm Pins down to 0.8mm 			
Size	 Insert/ Mold up to 500*400*200mm 			
Number of parts	~100	• ~30	• ~15	• ~5
Process	 According to Rapid Molds IM guidelines 			
Tool Design	 According to Rapid N 	Aolds IM guidelines		

• Answers to FAQ are mostly found in this table

Part 1 – Injection parameters

Material	PP+GF	PA+GF	РОМ
Nozzle Temp [C]	195	285	195
Inj. Pressure [bar]	200	200	200
Hold Pressure [bar]	200-400	200-400	200-400
cycle time [s]	110	110	110
Clamping force [kN]	400	400	400

Additive Manufacturing Evolution

Aero – Interior Applications

Fused Deposition Modeling

- Additive Manufacturing Process
- •Thermal Plastic Materials
- Lights Out Fabrication

Process CAD File

Manufacture

Completed Part

FDM Process

FDM Process

Source of images – Solid Concept YouTube Video http://youtu.be/oujzQvz79ig

FDM Material Properties

Property		SR30	SR100	ULTEM S1
Tg	(°F) (°C)	212 100	271 133	365 185
CTE (ASTM E228))	100	100	100
95°F-212°F	[E-5 in/(in°F)]	6.5	5.5	Not
35°C-100°C	[E-6 m/(m°C)]	115.53	100	Applicable
CTE (ASTM E228)				
212°F-266°F	[E-5 in/(in°F)]	Not	10.4	Not
100°C-130°C	[E-6 m/(m°C)]	Applicable	195	Applicable
CTE (ASTM E228))			
95°F-330°F	[E-5 in/(in°F)]	Not	Not	3.6
35°C-165°C	[E-6 m/(m°C)]	Applicable	Applicable	64.6

ULTEM S1 Mechanical Properties

Property	Room Temp	High Temp	% Diff
Test Temp	(°F) 70 (°C) 32	350 160	
Tensile Strength (ASTM E228) (K	(SI) 7.97	3.81	48%
(M	Pa) 54.95	26.27	
Tensile Modulus (ASTM E228) (K	(SI) 336	305	91%
(M	Pa) 2317	2103	
Compressive Strength (ASTM E228) (K	(SI) 6.97	3.39	49%
(M	Pa) 48.06	23.37	
Compressive Modulus (ASTM E228) (K	(SI) 98	72	73%
(M	Pa) 676	496	

FDM Core Material Summary

Increasing Core Service Temp

ULTEM S1 Dynamic Flex

FDM Core Tool Design

- Design your core
 - Create geometry in CAD
 - Scale for CTE Growth
 - Export STL
- Process in Insight
 - Determine part density
 - Adjust raster air gap
 - Set wall thickness
 - Set "Invert build materials" checkbox
 - Generate tool paths
 - Save and send to FORTUS system

CTE Compensation

• Part Tolerances

- Part tolerance +/-0.030inch

CTE Calculations

- Unadjusted ToolFeatureGrowth@CT = FeatureLength@RT X Δ Temp X CTEfdm
- AdjustedToolFeature@RT = FeatureLength@RT $(1+\Delta Temp(CTEcomp CTEfdm))$
- TSFToolScaleFactor = ToolFeature@RT / FeatureLength@RT

ULTEM Example

Feature	Feature Length @ RoomTemp	Unadjusted Tool Feature Growth @ Cure Temp	Adjusted Tool Feature @ RoomTemp	Tool Scale Factor
Width	1.5	0.015	1.489	99.266%
Height	3	0.030	2.978	99.266%
Length	23	0.232	22.831	99.266%

Tool Bagging Method

- Surface Bagged
 - Minimizes autoclave pressure loads on tool
 - Requires good surface seal throughout cure cycle
 - Requires additional tool surface to seal bag too
- Envelop Bagged
 - Full autoclave pressure applied to tool
 - Does not require a perfectly sealed surface
 - Long skinny tools many need special support at temperature
- Bagged to Plate
 - Full autoclave pressure applied to tool
 - Does not require a perfectly sealed surface
 - Plate can reinforce larger tools during cure cycle

Surface Bagged

Bagged To Plate

Build Orientation

- Identify Critical Surfaces
- Orientate Build
 - Minimize layer stepping on least critical surfaces

- Attempt to minimize build costs

Tool Finishing

- "As Is"
 - Fastest, minimal cost
 - Unimproved surface
 - Requires surface seal
- Filled Surface
 - Most accurate surface
 - Tough surface seal
 - Demonstrated multiple releases
 - Supports surface bagging

- Sanded Surface
 - Less accurate
 - Sand to valleys
 - Requires surface seal
- Teflon Taped
 - Provides a good surface seal and reliable release surface
 - Geometry dependent

Finishing Products

- As Is"
 - Fastest method
 - Requires surface seal to prevent resin leaching
 - Vacuum bag seal
 - Hysol 9396/Zyvax QuickSkin
- Filled Surface
 - Most accurate surface
 - Fill and sand back to zebra
 - Demonstrated surface coats
 - Hysol 9394 & EA960F
 - Meets 350F service temp
- Sanded Surface
 - Less accurate
 - Sand to valleys
 - 120-220 grit aluminum oxide
 - Requires surface seal to prevent resin leaching
 - Hysol 9396/Zyvax QuickSkin
- Teflon Taped
 - Airtech's "ToolTech" tape
 - Provides a good surface seal
 - Reliable release surface
 - Geometry dependent

"As Is"

Hysol 9394

Hysol EA960F Coated & Sanded

Airtech's ToolTech

