

Advanced EOD Robotic System AEODRS

09.27.12

The AEODRS Program

DoD Top 5 Systems Engineering Award

"AEODRS is the Navy's example program for open architecture and a model for the Navy's future acquisition approach."

- Ms. Mary E. Lacey, DASN RDT&E

"AEODRS is not only the flagship program for EOD but for the entire Navy."

- CAPT James Stein, EOD/CREW Program Office

The Critical Challenge

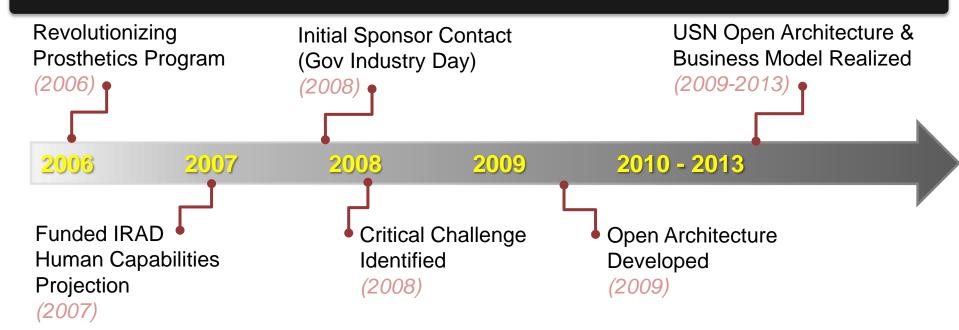
Create the Next Generation of Explosive Ordnance Disposal Robots

Remotec F6A

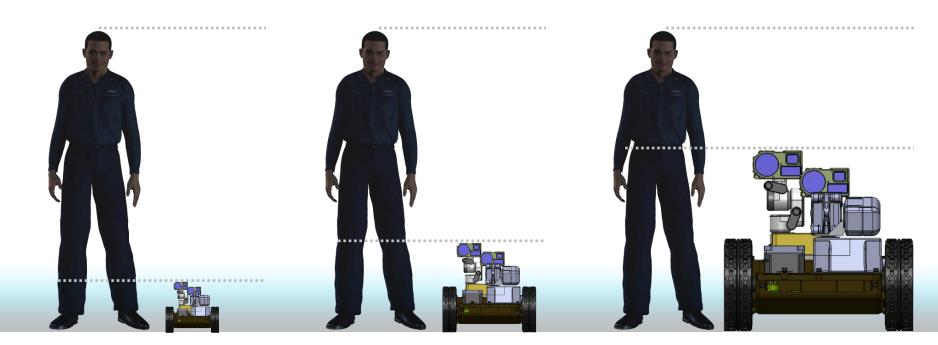
APL

The Critical Challenge

Create the next generation of EOD robots using a common architecture and open system design.


- Current systems function well.
- Valuable field experience has been gained with the existing systems.

Deploying an open architecture will improve rapid upgrades and logistics support.


Program Evolution

AEODRS - A Family of Systems

Increment 1:

Dismounted Operations

- Fills capability gap
- Back-packable
- Reconnaissance and threat assessment (to 100m)
- Smallest unit (<35 lbs)

Increment 2:

Tactical Operations

- 2-man portable (<165 lbs)
- Down range reconnaissance and threat prosecution (to 1000m)
- Replaces existing robot class

Increment 3:

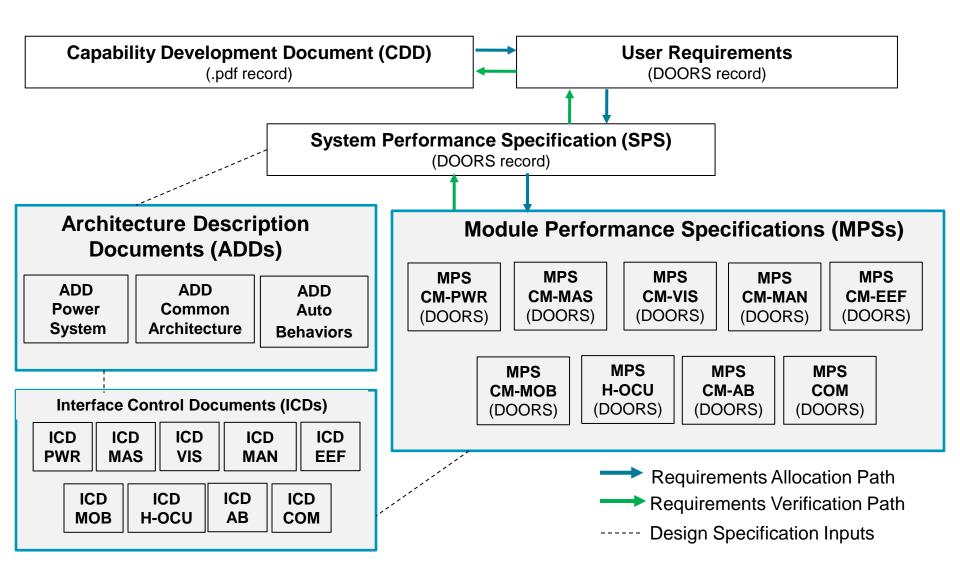
Infrastructure Operations

- Trailer transportable
- Provides heavy lifting capability
- Largest unit size (750 lbs)
- Replaces existing robot class

APL's Five Roles

- Common System Architecture Definition
- Develop High Dexterity Manipulation and Advanced Technology
- Architecture and System Test Bed Development
- Advanced Systems Engineering
- Prime System Integrator for System Development and System Integration

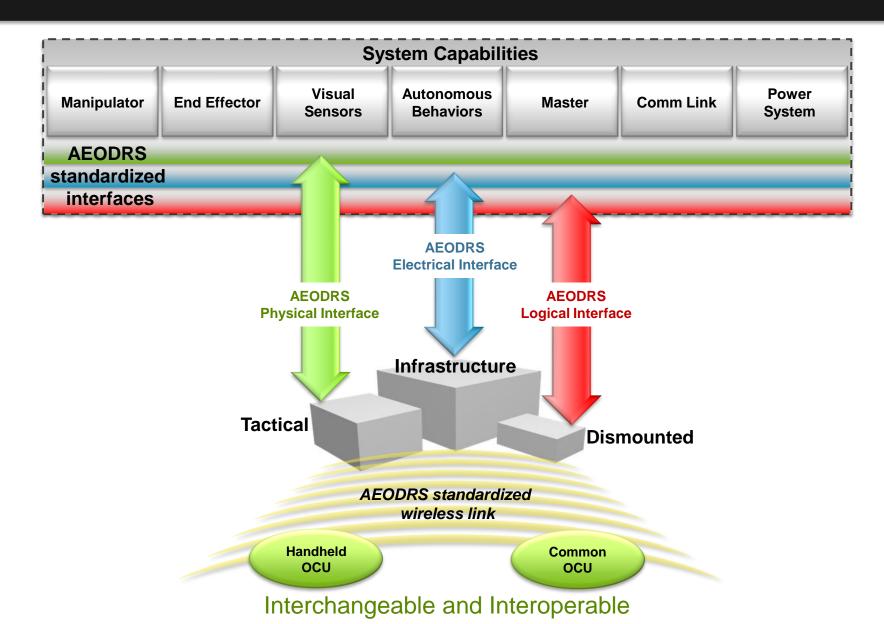
The System Development and Integration Team (SDIT)


The System Development and Integration Team is equivalent to an integrated product team (IPT) for Milestone B activities. It consists of five members. Each member provides specific subject matter expertise to the program.

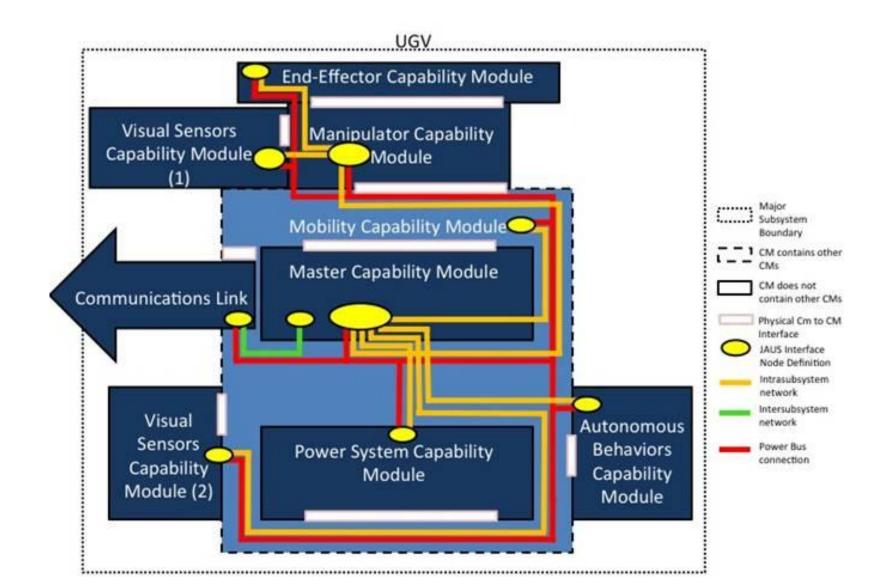
The SDIT Members and specific roles:

- NAVEODTECHDIV Program Management, User Requirements and Testing
- APL Prime System Integrator and Requirements Management
- SPAWAR Software for Autonomous Behaviors and Operator Control Unit
- PSU/ARL Power Systems
- Battelle Memorial Institute Risk Management and Test Bed Simulatior

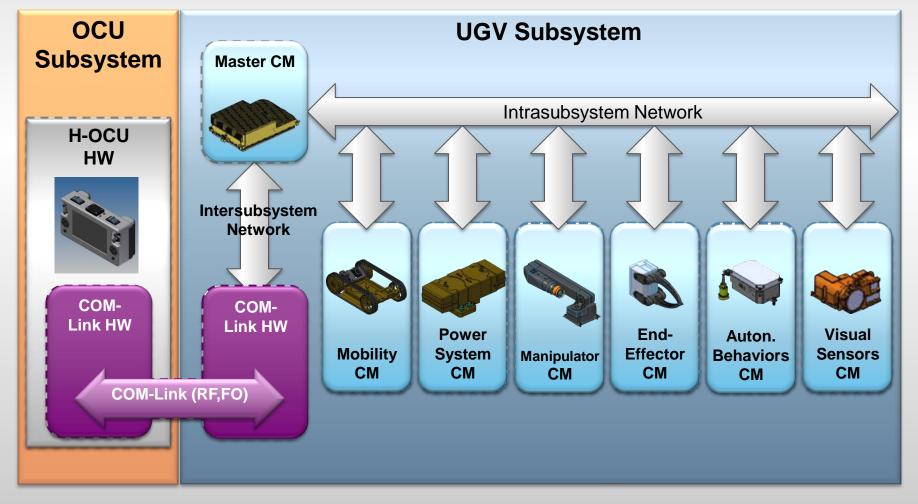
The SDIT is a highly collaborative team that tackles all technical aspects of the program.

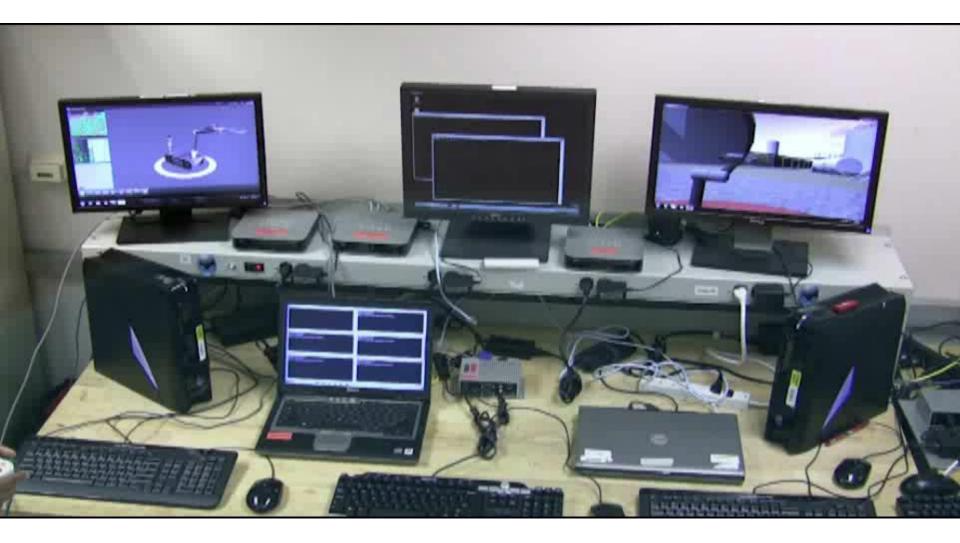

Requirements Development and Management

APL



Common System Architecture Definition


The Reference Architecture


System Test Bed Development

AEODRS System

APL

System Test Bed

APL

System Development and Integration

Manage Industry Suppliers

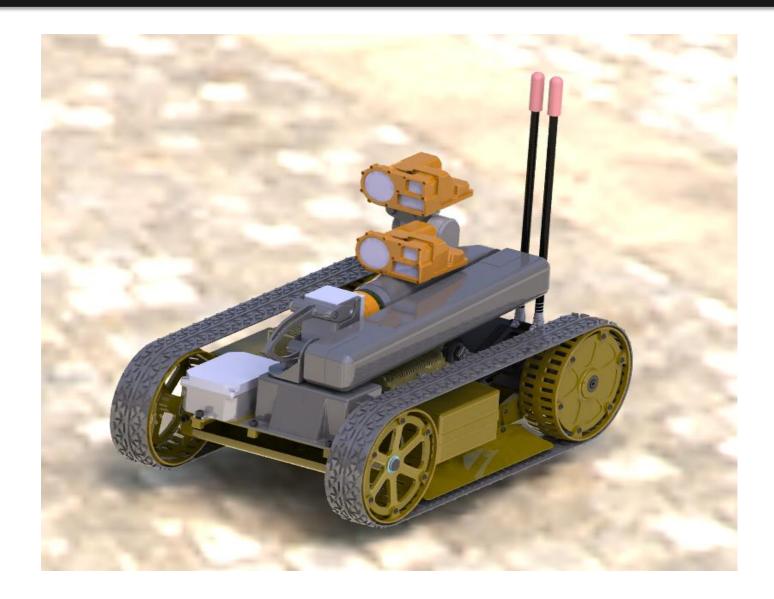
- CM-MOB supplier is Remotec/MacroUSA
- CM-VIS supplier is Chatten Associates
- CM-MAS, CM-MAN, CM-EEF supplier is RE2
- CM-PWR supplier is PSU/ARL
- COM-Link supplier is NAVEODTECHDIV
- CM-AB supplier is a collaboration of APL and SPAWAR
- Handheld OCU supplier is a collaboration of SPAWAR and AmRel
- Manage Design to Requirements
- Manage System Test Bed Development and Implementation
- Support NAVEODTECHDIV Testing
- Perform Final System Integration
- Transition Prime System Integration role to Industry

System Development and Integration

Example: Technical Performance Metric for Weight

APL

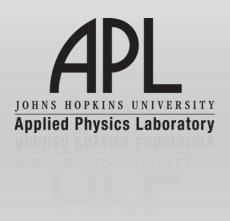
Last update: 25 Jan 2012														
Milestones	Total	CM- MOB	Harness	CM- PWR	BB2590 x 2	CM- MAS	CM-VIS (1)	CM- VIS(2)	CM-EEF	CM- MAN	CM-AB	οςυ	сомм	Description
Threshold Spec	35.00	12.90	0.00	2.00	6.20	1.10	1.75	0.75	1.50	4.00	1.30	2.50	1.00	Baseline weight allocations
Proposal	42.03	20.67	0.00	2.00	6.20	1.00	1.73	0.73	1.10	3.80	1.30	2.50	1.00	Accepted CM-MOB weight challenge
Post Kickoff (July 2011)	38.13	16.77	0.00	2.00	6.20	1.00	1.73	0.73	1.10	3.80	1.30	2.50	1.00	Eliminated right angle gear drives (increase CM-MOB width by 1/2 inch), replaced metal tracks with belts.
EEIF updates (3 Aug 11)	38.43	16.77	0.00	2.00	6.20	1.00	1.73	0.73	1.20	4.00	1.30	2.50	1.00	EEIF adds additional weight and length to the CM-MAN, CM-EEF pair.
Initial Trade (19 Aug 11)	35.16	13.50	0.00	2.00	6.20	1.00	1.73	0.73	1.20	4.00	1.30	2.50	1.00	Reference the weight trade study.
Connector trade (15 Sept)	35.96	13.50	1.00	2.00	6.20	1.00	1.73	0.73	1.20	4.00	1.10	2.50	1.00	Preliminary results of the connector/harness study have provided initial harness weight validation of 1 lbs.
TIM for CM-MOB (28 Sept)	35.66	13.50	0.00	2.00	6.20	1.00	1.73	0.73	1.20	4.00	1.10	3.20	1.00	Integrated logical wiring harness into CM-PWR with a net zero weight gain for the harness. Updated H- OCU based on estimates from Amrel.
CM-MOB and CM-PWR design summit (24-25 Oct.) at APL	36.30	13.50	0.00	2.50	6.40	1.00	1.70	0.70	1.20	4.00	1.10	3.20	1.00	Updated high side CM-PWR mass after two day design summit with Remotec/Macro and PSU ARL at APL
System Design Reivew (10 Nov 2011)	35.60	12.90	0.00	2.20	6.40	1.20	1.80	0.80	1.30	4.20	1.10	3.00	0.70	System configuration is stable. All CMs in preliminary design. Anticipate incremental improvements as CM development proceeds.
CM-AB CDR (16 Nov 2011)	35.50	12.90	0.00	2.20	6.40	1.20	1.80	0.80	1.30	4.20	1.00	3.00	0.70	CM-AB will meet Objective weigth.
CM-PWR PDR (15 Dec 2011)	36.80	12.90	0.00	3.50	6.40	1.20	1.80	0.80	1.30	4.20	1.00	3.00	0.70	CM-PWR is missing the threshold weight significantly. This PDR estimate is conservative
CM-PWR Tiger Team (22 Dec 2011)	36.70	12.90	0.00	3.50	6.30	1.20	1.80	0.80	1.30	4.20	1.00	3.00	0.70	Used a sample set of BB2590s to establish an accurate battery weight.
CDRs: CM-VIS, CM-MAS, CM- EEF, CM-MAN, (13 Jan 2012)	36.40	12.90	0.00	3.50	6.30	1.10	1.70	0.70	1.30	4.20	1.00	3.00	0.70	Factors in the EEIF weight on EEF and MAN.
CDRs: H-OCU, CM-PWR (20 Jan 2012)	36.22	12.90	0.00	3.12	6.30	1.10	1.70	0.70	1.30	4.20	1.00	3.20	0.70	CM-PWR and H-OCU have some potential for reduced weight.
CDR for CM-MOB (26 Jan 2012)	34.63	11.31	0.00	3.12	6.30	1.10	1.70	0.70	1.30	4.20	1.00	3.20	0.70	Use of carbon fiber in CM-MOB design.


Example - Weight Reduction Options

ID	Savings (lbs)	Description						
1	0.1	CM-MAS 6 Port Configuration (minimal thermal fins)						
2	0.3	CM-AB KVH Gyro removal						
3	N/A	H-OCU Single Battery Operation						
4	0.3	CM-MAN to CM-EEF interface simplification						
5	0.7	CM-MOB COTS Motors and Drivers						
6	N/A	Battery straps vs. Battery covers						
7	0.7	Remove CM-VIS Secondary (CM-MAN)						
Total	2.1							

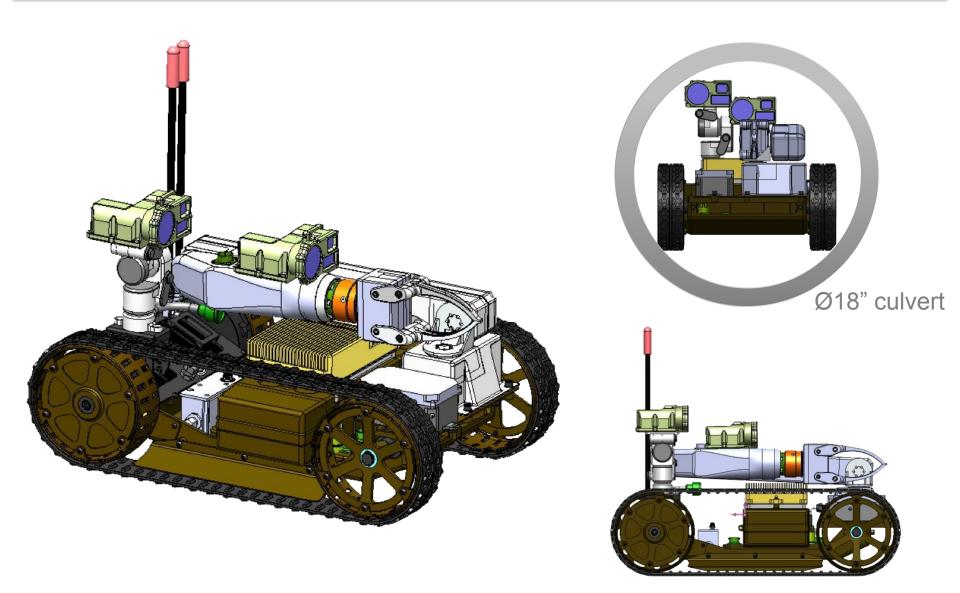
APL

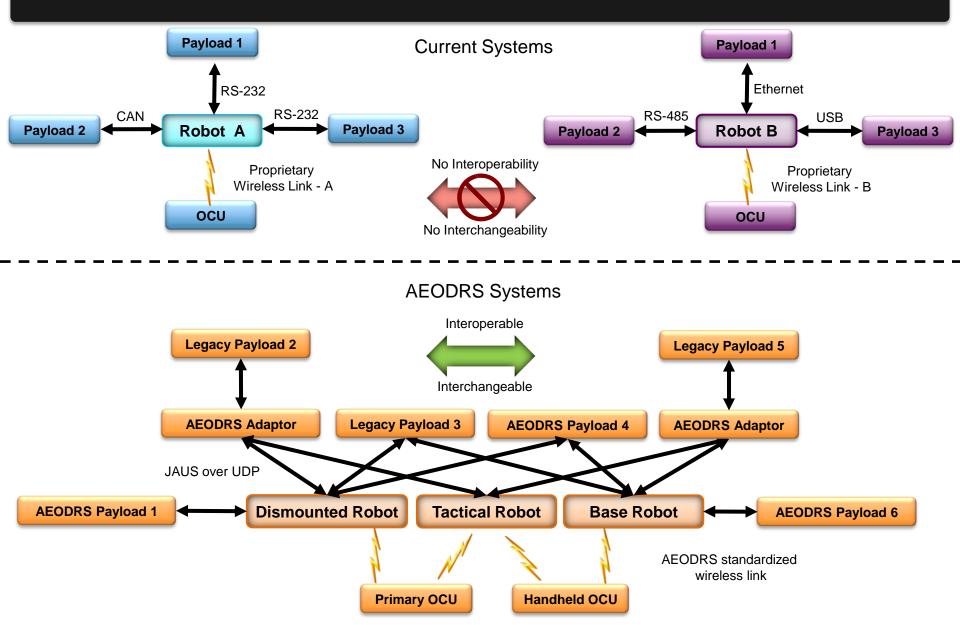
AEODRS Dismounted UGV...Arriving Summer 2012



APL

AEODRS Dismounted UGV...Arriving Summer 2012





AEODRS Dismounted Design

Common System Architecture

