

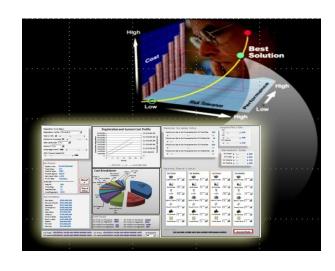
Modeling and Simulation

More Critical Than Ever in a Challenging Environment

Frank Russ

October 2013

The Need for Modeling and Simulation

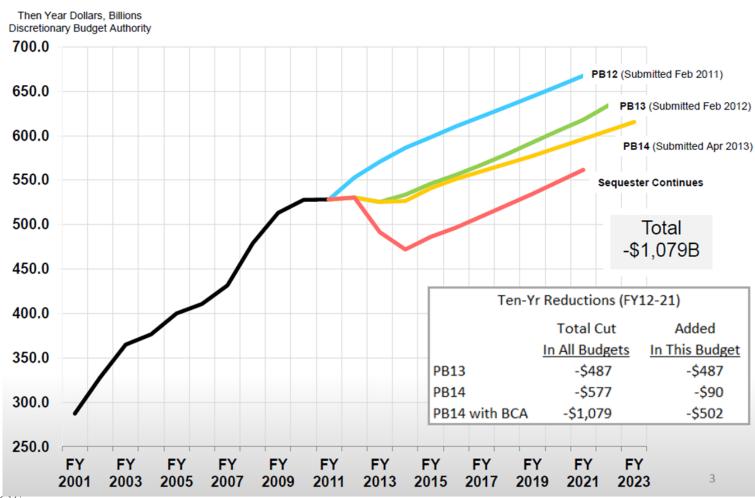


★ External Factors

- Increasing Mission Complexity
 - Rapid What-if Scenarios
- Declining Customer Budgets
- Drive Toward FFP Contracts
- Affordability
- Long Range Planning Challenges

★ Internal Factors

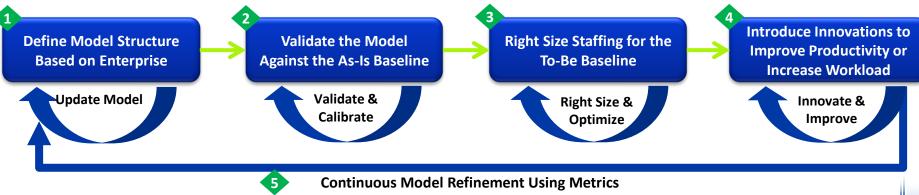
- Solution Credibility
- Program Execution Risk
- Affordability
- Design to Cost
- Dispersed Workforces



DOD Budget Outlook

Defense Budgets Past and Future (Base Budget)

Modeling and Simulation Applications


1

- ★ Metric/Statistical Models
 - IT Services Optimizations
 - IT Transformations
- ★ Business Process Modeling
 - Manufacturing Line Process Flows (Discrete Event)
- ★ Sustainment System Affordability Models
 - Integrated Logistics Affordability Optimizations
- ★ Mission Performance Models
 - Global Communications Modeling

Rapid Modeling and Simulation Methodology

- **❖** The Approach is Not Trivial...But it is Repeatable
- It Requires Skilled Staff to Implement
- **❖** It Provides Cost Estimation Credibility...And Supports Ongoing Enterprise Analysis

Problem Complexity

- ★ Why not prototype?
 - Prototypes can be very expensive and may not accurately simulate the system
 - Access to the systems' inputs and outputs may be difficult to achieve or be non-existent
 - Limited Availability to conduct What-if Analyses
- ★ Customer Mission Complexity is Rapidly Increasing
 - Assets that support these missions are growing more complex at an equal or faster rate
- ★ Degrees of Variation are too broad for traditional methods to work
- ★ Optimized is in the eye of the Beholder
 - Customer priorities, contractual requirements, budgets

Discover Hidden Performance Optimizations Through M&S and Expert Analyses

Enterprise IT Workflow Case Study

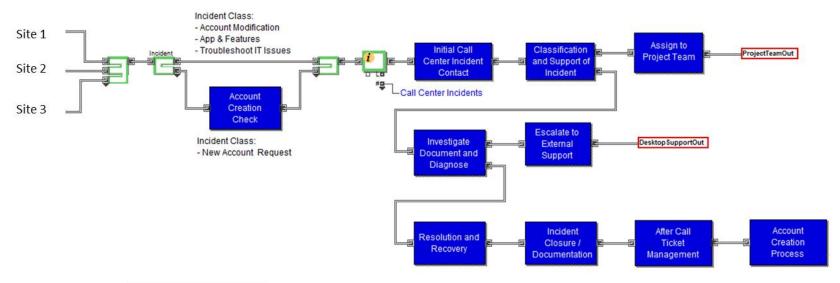
★ Challenge

Maintain or Exceed SLA performance while simultaneously increasing productivity and reducing cost

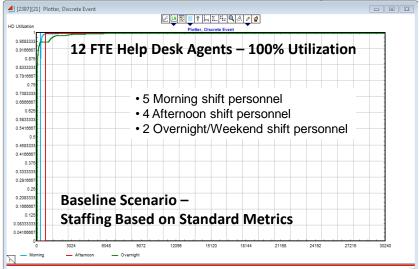
★ Approach

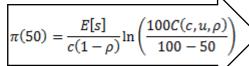
- Model Specific Enterprise Workflows
- Validate
- Apply Business Innovations
- Optimize on Customer Best Value

* Result

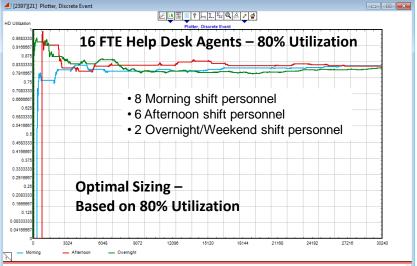

- 58% Cost Takeout

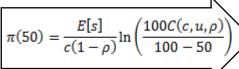
Enterprise IT Workflow Case Study



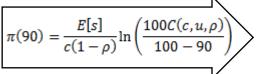


Simulation Output Analysis – Help Desk


Median Call Answer Time: 1.1 Hour

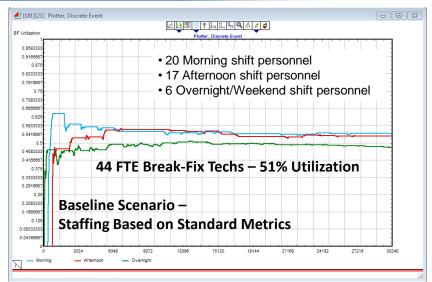

Understaffed

$$\pi(90) = \frac{E[s]}{c(1-\rho)} \ln \left(\frac{100C(c, u, \rho)}{100-90} \right)$$


90% Call Answer Time: 3.8 Hours

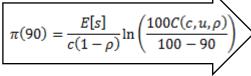
Median Call Answer Time: 42 Seconds

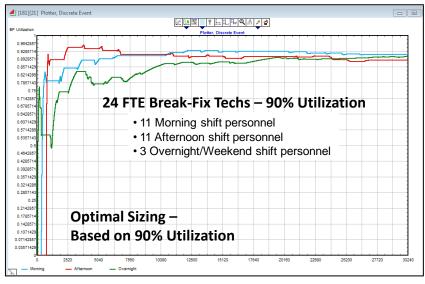
Optimally Staffed

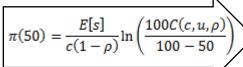

90% Call Answer Time: 7.6

Minutes

Simulation Output Analysis – Break-Fix




Median Return to Service: 1 Hour

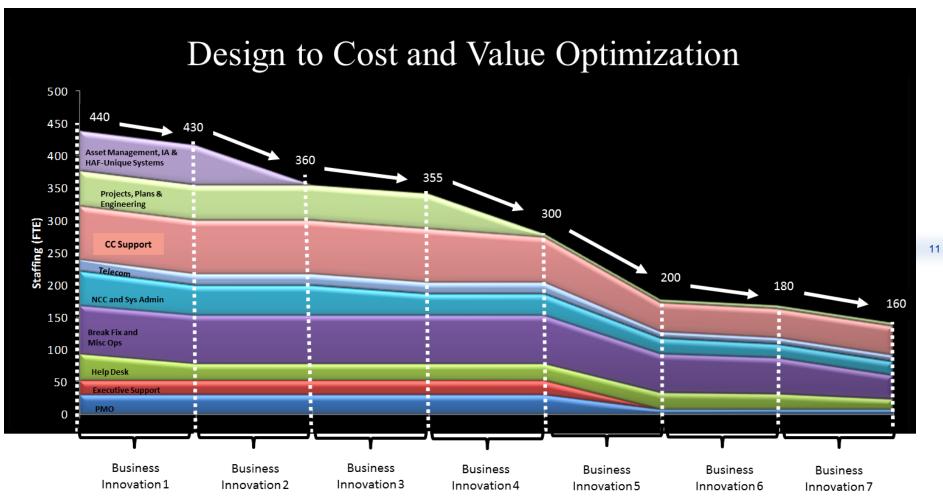

Overstaffed

90% Return to Service:

1 Hour

Median Return to Service: 3.2 Hours

Optimally Staffed


$$\pi(90) = \frac{E[s]}{c(1-\rho)} \ln \left(\frac{100C(c, u, \rho)}{100-90} \right)$$

90% Return to Service: 8.9 Hours

Innovation With Purpose

Innovations

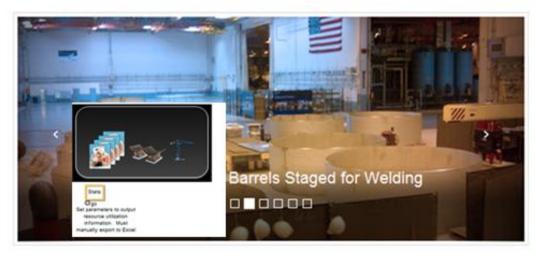
Manufacturing Process Optimization Case Study

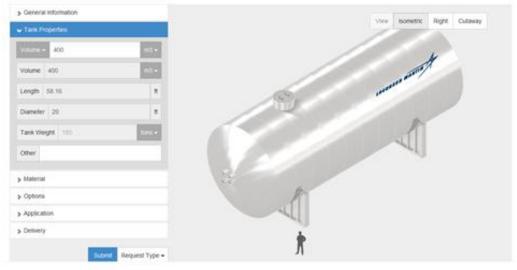
★ Challenge

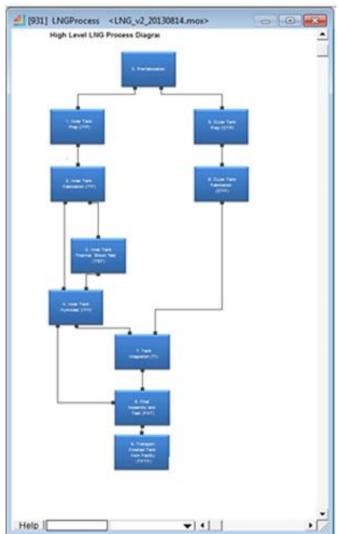
- Can LNG tanks be produced at the right price points, and delivered on the required schedule
- Where are the productivity bottlenecks that prevent meeting the business objectives

★ Approach

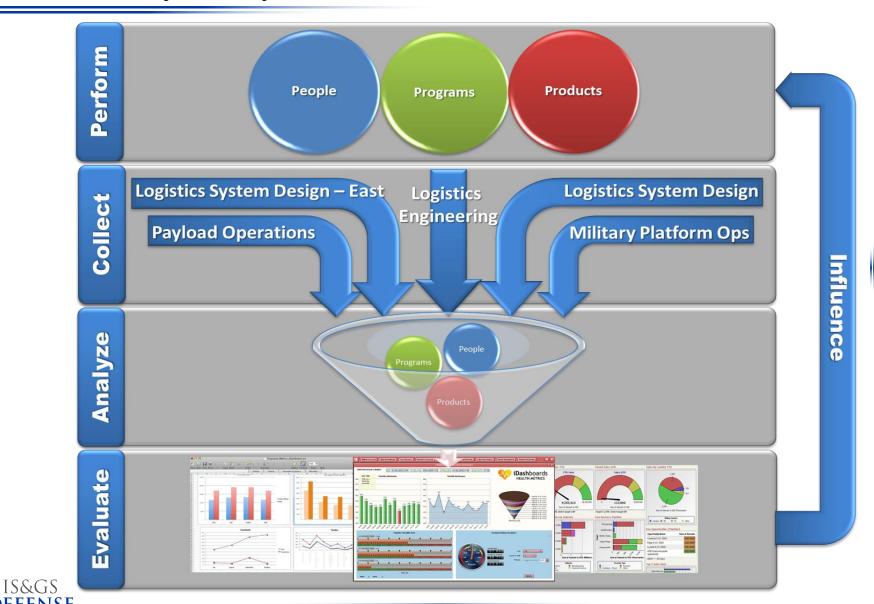
- Model the manufacturing line process detailing required resources,
 including human, capital, and facilities. Determine system throughput.
- Add a second processing line and update the models to include resource contention and evaluate impacts to throughput
- Develop an integrated labor/cost modeling tool for rapid ROM preparation


★ Result


- Rapid response to new orders
- Easily assess value to changes inn the flow or adding additional capacity



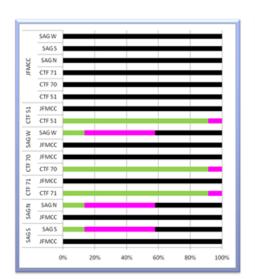
Liquid Natural Gas Tank Manufacturing Model



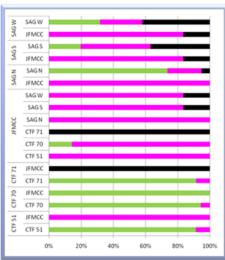
Affordability Analysis Process Flow

Architecture Performance Analysis Case Study

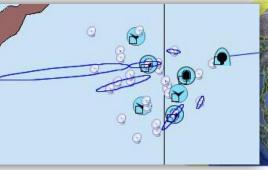
Recent Proposal Past Performance							
Program	% Reduction In Spares	% Reduction In Total Support Costs (Including Warranty)	Total Recommended Cost Savings				
Program A	68.0%	48.9%	(>\$10M)				
Program B	49.1%	65.1%	(>\$85M)				
Program C	58.9%	44.1%	(>\$10M)				
Program D	N/A	44.0%	(>\$137M)				
Program E	-41.3%	29.8%	(>\$2M)				
Program F	58.9%	7.2%	(>\$1.5M)				



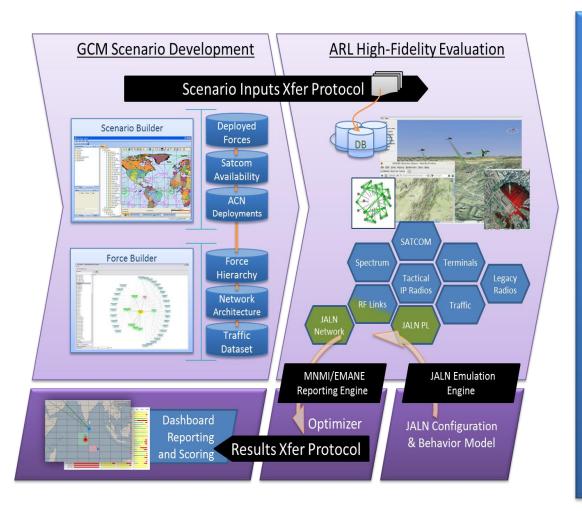
GCM Models Enterprise-Wide Comms



Message Type	Messages		% Terminals Protected			
		Benign	0%	5%	23%	64%
Air Defense/Management	35,464	2%	13%	11%	4%	4%
BDA	6,909	4%	8%	8%	4%	4%
CDR Guidance	14,069	0%	10%	9%	1%	0%
CDR Information Requests	21,325	5%	22%	16%	8%	6%
Civil Affairs	1,970	0%	29%	29%	0%	0%
Collaboration	36,199	2%	13%	12%	5%	3%
Combat Support Systems	48,805	7%	15%	14%	11%	10%
Commander Orders	37,260	4%	16%	13%	7%	6%
Coordination	69,205	2%	10%	9%	5%	4%
COP	247,978	4%	32%	13%	8%	5%
Enemy Reporting	10,817	2%	29%	19%	4%	3%
Fire Support	150,780	2%	14%	13%	6%	2%
FRAGOS	15,331	3%	11%	11%	6%	4%
INTEL	52,370	3%	13%	12%	5%	3%
Medical	4,418	0%	4%	4%	0%	0%
Mission Planing	16,647	0%	1%	1%	0%	0%
NBC	891	2%	12%	9%	7%	2%
Netcentric/Network Data	45,912	1%	33%	23%	1%	1%
OPLANS	8,469	1%	9%	8%	3%	2%
Other	110,448	2%	7%	6%	3%	2%
Sensors	128,673	4%	20%	10%	4%	4%
Situation Awareness	99,349	4%	14%	14%	10%	7%
SOF	106	0%	18%	8%	0%	0%
Weather	548	0%	8%	8%	0%	0%
Totals	1,163,943	3%	18%	12%	6%	4%


No HALE ACNs

With 3 HALE ACNs in Theater



GCM updating MILSATCOM AoA since 2009: new scenarios, AEHF options, ACNs.

OSD and Army Research Lab: JALN Architecture Research Testbed

- Army Research Lab High-Performance Computing (ARL HPC) cluster runs high-fidelity netcentric communications models
- April '13 OSD and ARL determined that GCM would be the best way to flexibly and rapidly build large, relevant scenarios for their HPCbased communications modeling, including:
 - Unit locations and movements
 - Network topologies
 - Network traffic
- IS&GS working with OSD and ARL to enhance their comm modeling capability for XDR and Link-16 on the path toward a JALN Architecture Research Testbed (JART)

Modeling and Simulation Summary

- ★ Models provide a degree of flexibility to model virtually any customer problem
- ★ Modeling first can save cost, burn down risk, and reduce schedule uncertainty
- ★ Modeling and Simulation can be applied in a multitude a ways to deliver real customer value
- ★ Traditional methods won't address the degrees of variability or system uniqueness
- ★ Models provide customer's and business with rapid "What-if" capability for Long Range Planning

