Engineering Your Software
For Attack

Robert A. Martin

Senior Principal Engineer
Cyber Security Center
Center for National Security
The MITRE Corporation

MITRE

© 2013 The MITRE Corporation. All rights reserved.

World Series

Red Sox lead series 4-2

Game 6, Wednesday, October 30, 8:07 PM (ET)
Fenway Park, Boston, Massachusetts

St. Louis Boston &
@ir Cardinals 1-6 Red Sox
Final
1 2 7 R H E
Cardinals 0 0 0 0 0 0 1
Red Sox o 0 3 3 0 0 0 0 x 6 8 1
Game7-Thy,Oct31 & Cardinals @ RedSox 4k 8:07PM(ET)

SOX ARE CHAMPS

In Series win, Sox go from worst to first

WIKIPEDIA

The Free Encyclopedia

lavigation

Main page
Contents

i Featured content
Current events
Random article
Donate to Wikipedia

teraction

Help

' About Wikipedia
Community portal
Recent changes
Contact page

Article Talk

2013 World Series

From Wikipedia, the free encyclopedia

The 2013 World Series was the 109th edition of Major League
Baseball's championship series. The best-of-seven playoff pitted the
National League champion St. Louis Cardinals against the American
League champion Boston Red Sox. The Red Sox had home field
advantage for the series, based on the American League's win in the
All-Star Game at Citi Field in Queens, New York, on July 16" The
Series started on Wednesday, October 23, ending on Game 6 which
occurred the following Wednesday, October 30, 2013.

This was the fourth meeting of the Cardinals and Red Sox in the World
Series (previously meeting in 1946, 1967, and 2004). It is the first
World Series since 1999 to pair the two teams with the best regular-
season records in their respective leagues, and only the third in history
(following the 1949 and 1958 Series) to feature two teams with
identical regular-season records.'?) Because both teams share the best
overall regular-season records in baseball, this will be only the fourth
time since the introduction of the Division Series (1995) in which the

Read View source View history

Red Sox find safety in numbers,
more memorable Game 6 scenes

Create account @ Login

Search Q
L
2013 World Series
U 0 :
DRLD. &
ERI]
L 4
FALL CLASSIC
Team (Wins) Manager Season
Boston Red Sox (4) | John Farrell | 97-65, .599, 5.5
GA
St. Louis Cardinals Mike 97-65, .599, 3 GA
) Matheny
Dates: October 23-30

What We’ve Learned

Making systems secure by just reducing attack surface
really hard — maybe impossible

= Software Systems & Networks too large and complex

= Zero vulnerabilities for all assets on network?
— Assumes you know all assets

— Assumes you can know all vulnerabilities

Cyber Attack Lifecycle

Exploit
© 2013 The MITRE Corporation. All rights reserved. MITRE

4

Characteristics of the Advanced Persistent Threat

1. We won’t always see the initial attack
2. We can’t keep the adversary out

3. Advanced Persistent Threat is not a “hacker”

RE Corporation. All rights reserved. MITRE

Cyber Threat Intelligence Sharing Building
Blocks — Phases of a Cyber Attack Lifecycle

Recon Deliver Control Maintain
Weaponize Exploit Execute
Proactive Detection Mitigation Incident Response & Mission Assurance

Recon » Obtain information to conduct the attack

Weaponize Place payload into delivery vehicle
Deliver Send the attack to the potential victim
Exploit * The point of no return

Control * Direct the victim system to take actions
Execute * Fulfill mission requirements

Maintain Insure future access

MITRE

© 2013 The MITRE Corporation. All rights reserved.

na
 bo IR 8

IMEEETROe s o

——

aasadin

8

Elements of an Attacker Aware Cyber Threat
Intelligence Sharing-Based Approach
1. Understanding of the Attackers Building Blocks
2. Effective Cyber Threat Intelligence Sharing Model

3. Agile defensive posture aligned with threat from
the attackers and attack techniques

4. Development team working side-by-side with
operators (DevOps)

© 2013 The MITRE Corporation. All rights reserved. MITRE

Extending the Threat-Driven Perspective
Beyond Operational Defense

> Risk-Based, Attack-Aware, and Threat-Driven

Operational Strategic

© 2013 The MITRE Corporation. All rights reserved. MITRE

10

From Just a Mitigation Approach

A traditional information assurance approach based solely
on regulation, which resulted in an approach based on
mitigation and compliance around static defenses

To a threat/attacker based cyber defense that

understands attacks and balances Mitigation with
Detection and Response

» Defenders become demanding consumers of
intelligence, informed by understanding of the attacks

their software systems face l l H

© 2013 The MITRE Corporation. All rights reserved. MITRE

» Producers of intelligence

11

What is “Cyber Threat Intelligence?”

Consider these questions:
= What activity/attacks are we seeing?

= What attacks should I look for on my
networks and systems and why?

= \Where has this attack been seen?

= \What does it do?

= What weaknesses does this attack exploit?

= Why does attacker do this?

= Who is responsible for this attack?

= \What can | do about it?

© 2013 The MITRE Corporation. All rights reserved.

Structured Threat Information eXpression (STIX)
v1.0 Architecture

Sub-Observables[*]

]! 10

Observables[*] /

Observable

AssociatedCampaigns[*]

RelatedIndicators[*]

Relatedindicators[*]

v

Campaign

l HistoricalCampaigns[*] I
l Attribution[*]

RelatedTTP[*] IndicatedTTP[*]

Indicator

I RelatedIndicator{*] I

| RelatedObservables[*] |

RelatedTTP[*]

RelatedIncidents[*]

ObservedTTP[*]
ExploitTarget[*]

LeveragedTTP[*] i;

COATaken[*]
COARequested[¥]

ThreatActor Incident

F 3

AssociatedActors[*] ‘?/‘i\
&£

ExploitTarget

PotentialCOA[*]

SuggestedCOA[*]

Course of Action

{ RelatedThreatActors[*] }

RelatedIncidents[*]

© 2013 The MITRE Corporation. All rights reserved. MITRE

13

Structured Threat Information eXpression (STIX)
v1.0 Architecture

Sub-Observables[*]

Observable

© 2013 The MITRE Corporation. All rights reserved. MITRE

14

Structured Threat Information eXpression (STIX)
v1.0 Architecture

RelatedIndicators[*]

IndicatedTTP[*]

Indicator

SuggestedCOA[*]

© 2013 The MITRE Corporation. All rights reserved. MITRE

15

Structured Threat Information eXpression (STIX)

v1.0 Architecture

[RelatedObservables[*]]

/" (v

Incident

l RelatedIndicator{*] I

LeveragedTTP[*]

COATaken[*]

COARequested[¥]

4

Course of Action

© 2013 The MITRE Corporation. All rights reserved.

{ RelatedThreatActors[*] }

MITRE

16

Structured Threat Information eXpression (STIX)
v1.0 Architecture

AssociatedCampaigns[*]

&
L)
(1)

Campaign

RelatedTTP[*]

) m——

RelatedIncidents[*]

© 2013 The MITRE Corporation. All rights reserved. MITRE

17

Structured Threat Information eXpression (STIX)
v1.0 Architecture

}

l HistoricalCampaigns[*] I

ObservedTTP[*]

ThreatActor
ssociatedActors[*]

© 2013 The MITRE Corporation. All rights reserved. MITRE

18

Structured Threat Information eXpression (STIX)
v1.0 Architecture

= o

‘ W ExploitTarget
—

(?\ _/

_) _/l

© 2013 The MITRE Corporation. All rights reserved. MITRE

19

Structured Threat Information eXpression (STIX)
v1.0 Architecture

CAPECE

ExploitTarget[*]

© 2013 The MITRE Corporation. All rights reserved. MITRE

The Web Application Security Consortium / Threat Classification Taxonomy Cross Reference View &)

a I’@'I ﬂ n ﬂ http:/ /projects.webappsec.org/w/page /13246975 /Threat-Classification-Taxonomy-Cross-Reference-View

The Web Application Security Consortium

(4 login help

[wiki |- Pages & Files

VIEW

Threat Classification Taxonomy Cross Reference View

last edited by (3 Robert Auger 10 manths, 3 weeks ago

Threat Classification 'Taxonomy Cross Reference View'

(&) Page history

Search this workspace

& Tags: Threat Classification
o Check for plagiarism

SideBar @
This view contains a mapping of the WASC Threat Classification's Attacks and Weaknesses with MITRE's Common Weakness Enumeration, MITRE's Common Attack Pattern Enumeration and WASC. Frodects W
Classification, OWASP Top Ten 2010 RC1 (original mapping with OWASP Top Ten from Jeremiah Grossman & Bill Corry) and SANS/CWE and OWASP Top Ten 2007 and 2004 (original mapping Disiﬂhmd Onen Praxy Honevoats
* Listributed Upen Froxy Roneypats
from Dan Cornell, Denim Group) » Script Mapping
« The Web Security Glossary
WASCID | Name SANS/CWE Top 25 DWASP Top Ten 2010 OWASP Top Ten 2007 | OWASP Top * Weh Application Firewall Evaluation
2009 Ten 2004 Criteria
« Web Application Security Scanner
WASC-01 Insufficient Authentication 642 - Broken A7 - Broken A3 - Broken Evaluation Criteria
thentication and Authentication and Authentication . \Mw
ession Management, Session Management, | and Session + Web Hacking Incidents Database
» WASC Threat Classification
4 - Insecure Direct A4 - Insecure Direct management, .
Dbject References Object Reference A2 - Broken WASC Project Leaders
Access Control » Robert Auger
WASC-02 Insufficient Authorization 4 - Insecure Direct A10 - Failure to A2 - Broken * ::n'“#rcr:mh
: + Romain Gaucher
Dbject References, A7 Restrict URL ffo..:.:es.s., A4 | Access Control » Sergey Gordevehik
Failure to Restrict - Insecure Direct « Ofer Shezaf
RL Access Object Reference Brian Shura
WASC-03 Integer Overflows .)
WASC Main Website
WASC-04 Insufficient Transport Layer Protecti 10 - Insufficient A9 - Insecure « hitp://www.webappsec.org/
ransport Layer Communications
atection WASC Mailing Lists
. - » hitp://lists.webappsec.org/
WASC-05 Remote File Inclusion A3 - Malicious File
Execution 'WASC on Twitter
WASC_06 Format Strin » hittp: //twitter.com/wascupdates
WASC-07 Buffer Overflow A5 - Buffer Join us on Linkedin!
Overflows + http:{ /www.linkedin.com
; ! . [aroupsiqid=83336
WASC-08 Cross-site Scripting - Cross-Site Al - Cross Site A4 - Cross Site E—
ripting Scripting (X55) Scripting (X55)
WASC-09 Cross-site Request Forgery 5 - Cross-Site A5 - Cross Site Request Recent Activity @ b
&
quest Forgery Forgery (CSRF) . Insufficient Data Protection Working T
WAC, 10 Dianisl sf € " rd Cailisen tm Donetelot A1 Calliien # AQ Pioeinl mF aditad ks Pakart Alnar 1

21

Software Assurance.—The term “software

assurance” means the level of confidence
DoD Software-based System

that software functions as intended and is Srogram Office
free of vulnerabilities, either intentionally or Milestone Reviews
. . . . with OSD on SwA
unintentionally designed or inserted as part
. Program Protection Plan’s
of the software, throughout the life cycle. Sect933 “Application of Software

Assurance Countermeasures”
confidence \

Development Process
functions as intended

B Static Analysis

and Design Inspection
- Code Inspections

»+ CVE

CAPEC

CWE

Pen Test

Test Coverage

Operatlonal System
Failover Multiple Supplier
Redundancy

» Fault Isolation

. Least Privilege

| |« System Element Isolation

Cpee [T, Input checking/validation
free of vulnerabilities . SW load key

Development Environment
N Source

» Release Testing
> Generated code inspection

© 2013 The MITRE Corporation. All rights reserved. MITRE

Software Assurance Methods

Development Process

Apply assurance activities to the
procedures and structure imposed on

software development

Countermeasure

Selection

Table 5.3-5-5: Application of Software Assurance Countermeasures (sample)

Operational System

Implement countermeasures to the
design and acquisition of end-item
software products and their interfaces

Development Environment
Apply assurance activities to the
environment and tools for developing,
testing, and integrating software code

and interfaces

Development Process
funfgf;: 2::11{5:1:,;1r1:l:c:tlher A::al::'is Design Ilfs:‘:ect CVE CAPEC | CWE | Pen Cozemraga
software) , pla Inepoct pla ple pis pl Tost pla
Developmental CP1 SW 100/80% L::V;s 100/80 100/60 | 100/60 | 100/60 | Yes 75/50%
ot 100/80% Two 1 100580 | 100/70 | 10070 | 10070 | Yes | 75/50%
Function SW Levels
Static . Code
Anubisl Design . 4 CVE CAPEC | CWE |} Pen
nailysis nspec
Y Inspect p/a p/a p/a Test
pla pl/a
P
Failover Input
Multiple Fault Least System Element P SW load
’ . P " checking /
Supplier Isolation | Privilege Isolation validation key
Redundancy
Developmental CP1 SW 30% All all yes All All
Developmental Critical o
Function SW 50% All All yes All all
Other Developmental SW none Partial none MNaone all all
COTS (CPI asrﬁrCF) and NDI none Partial All None Wragl;l}ers.f all
Development Environment
Generated
SW Product Source Rele_a Se . c.o-de.
testing inspection
pla
C Compiler Na Yes 5020
Runtime libraries Yes Yes 70/none
Automated test system Nao Yes 50/none
Configuration management No Yes NA
system
Database No Yes 50/none

Development Environment
Access

Controlled access; Cleared personnel only

Additional Guidance in PPP Outline and Guidance

© 2013 The MITRE Corporation. All rights reserved.

MITRE

Defense Acquisition Guidebook

Your Acquisition Policy and Discretionary Best Practice Guide

13.7.3. Software Assurance

13.7.3.1. Development Process

13.7.3.1.1 Static Analysis

13.7.3.1.2 Design Inspection

13.7.3.1.3 Code Inspection

13.7.3.1.4. Common Vulnerabilities and Exposures (CVE)

13.7.3.1.5. Common Attack Pattern Enumeration and Classification (CAPEC)

13.7.3.1.6. Common Weakness Enumeration information (CWE)

..... Penetration Test
13.7.3.1.8 Test Coverage
13.7.3.2. Operational System
13.7.3.2.1. Failover Multiple Supplier Redundancy
13.7.3.2.2. Fault Isolation
13.7.3.2.3. Least Privilege
13.7.3.2.4. System Element Isolation
13.7.3.2.5. Input Checking/Validation
13.7.3.2.6. Software Encryption and Anti-Tamper Techniques (SW load key)
13.7.3.3. Development Environment
13.7.3.3.1 Source Code Availability
13.7.3.3.2. Release Testing
13.7.3.3.3. Generated Code Inspection
13.7.3.3.3. Additional Countermeasures MITRE

24

4. VULNERABILITY AND WEAKN

Purpose and Use

¢ Unpatched vulnerabilities are a major
* Akey goal of vulnerability managemer

FY 2013

Chief Information Officer

Federal Information Security Management Act

Reporting Metrics

Prepared by:

US Department of Homeland Security

Office of Cybersecurity and Communications

Federal Network Resilience

November 30, 2012

f vulnerabilities identifig
tion is that vulnerability
r asset management). TH
ility management capabil
—covering enough of thg
for a successful attack
hble to find and fix vulner.
—has a low enough rate g
b, to avoid unknown weal

ke of network boundary d
ue to be adequately free

be of hardware assets ide
dentifies NIST National V
the organization’s enter

For systems in development
and/or maintenance:

For systems in production:

ercentage of hardware as
he security of the system

Common Vulnerabilitig]

Open Vulnerability and|

htage of information systs

“ Once all organizations are reporting monthly to
* The presence of this question about identifying W
organization to use the tools described in section 4
and remove common weaknesses like register over
from compromising software.

© 2013 The MITRE Corpo

Use methods

instances of
common

to placing that

described in Table
9 to identify and fix
weaknesses, prior

version of the code
into production.

Can the Report on configuration
organization | and vulnerability levels
find SCAP for hardware assets
compliant supporting those

tools and systems, giving

good SCAP application owners an
content? assessment of risk

inherited from the
general support system
(network).

Can the
organization find
SCAP compliant
tools and good
SCAP content?

High

Moderate

Impact Level

Low

Table 8 — Responses to Question 4.3

Identify Universe
Enumeration

Find Instances
Tools and Languages

Assess Importance

¢ Common Weakness
Enumeration (CWE)

* Web scanners for web-
based applications

btatic Code Analysis tools

* Common Weakness Scoring

anual code reviews (especially
or weaknesses not covered by the
gutomated tools)

System (CWSS)

¢ Common Attack Pattern
Enumeration and
Classification (CAPEC)

eb scanners for web-based
Bpplications

PEN testing for attack types not
tovered by the automated tools.

E to Identify and Fix Instances of Common Weaknesses

See guidance that describes the purpose and use of these tools and how they can be used today in a

practical way to improve security of software during development and maintenance.

21

SQL Injection Attack Execution Flow CAPEC

o (MssqQL
— Database
.. >
@ rrssEEEEssssEEEEEEsEsEEEEEEEsEEEEEEEEEsEEEEEEE :
SELECT ITEM,PRICE FROM
PRODUCT WHERE

ORDER BY PRICE

' exec master..xp_cmdshell 'dir' --

ITEM_CATEGORY="Suser_input'’ i

Simple test case for SQL Injection CAPEC

Test Case 1: Single quote SQL injection of registration page web form fields

Test Case Goal: Ensure SQL syntax single quote character entered in registration

page web form fields does not cause abnormal SQL behavior
Context:

« This test case is part of a broader SQL injection syntax exploration suite of tests
to probe various potential injection points for susceptibility to SQL injection. If

this test case fails, it should be followed-up with test cases from the SQL
injection experimentation test suite.
Preconditions:

« Access to system registration page exists
* Registration page web form field content are used by system in SQL queries of
the system database upon page submission
« User has the ability to enter free-form text into
registration page web form fields
Test Data:

« ASCII single quote character
Action Steps:

http://cwe.mitre.org
» Enter single quote character into each web form

registration page

« Submit the contents of the registration page C
Postconditions: 4
» Test case fails if SQL error is thrown

http://capec.mitre.org
» Test case passes if page submission succeeds without
any SQL errors

® Gooele Earth
7 IF) REE) FoR(O) W=IT) Bho(a) ALFH)

Severity
A Critical - ,«ll '

SQL: lmoouon P)
eeted. TN \, -. “ ’

tlgn etel : ProbelDetect :
-3 ; g A) o« X 3 ‘\ 89; " °u° u e “?% 9 jection Probe Detected.
QLImeouo hofD e a8 ~ UG AFAAL - : '.-.' USSHOD ‘ro E,
4 27 i W AN " ot AR Vi SLln eonon ee Detected!
07 4+ > \ g i °t°°t° ‘ ﬁSQ Injection Probe Detected

v, ’ A ” el SEY AN njecti [L .
;?LD I:tl::::%ﬂ/"f ' 00,‘.,;,{',0!" "_’ 7 A A ' ootected-Obl echon robejDetected" o '/‘ ! tectejd. |
obe Omctoﬁ WD oL I o g\ g SO rm L NS ctioniProbef Stocted. '
tion Probo D ol L obel Flnje f& XE SOleecuon Probe Detected. WS

njection Pro =mmfﬁ;; A
njection Pro slocted!
on Detected’ -

R
WA
2 “(‘k leectlo \A

SQL Injection Prol')_gDefegted. A Q ',[rijfeouer{-‘i"robe Detected.

\ :)
SOL Injestion Probe[Detected! el i ',f e
o NS 5 B g A
SQL Injection Probe D°‘°°t°d SIS R0 ect:on R 'be Detected. ' Ima;e 1BCAO / <
>0Llruect|on Probe Dete'é;t‘ed Wt g 4 8 x ; ImagelC;2010Ter, °M°t"°°
% SoLilrueotmn Detected 25 ,lmazo USDAA Farm Serwce Agency
Al Loiasioo o o SR SERE VNSO Tniaction: AA. U:S. Navy, NGA. GEBCO,

COTEE CWE-89: Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents

Related Activities
Discussion List
Research
CWE/SANS Top 25
CWSsS

Calendar
Free Newsletter

Compatibility

Program
Requirements
Declarations

Make a Declaration

Contact Us

Search the Site

MITRE

)y

Home > CWE List > CWE- Individual Dictionary Definition (1.10)

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
Weakness ID: 89 (Weakness Base)
¥ Description
Description Summary

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

The software constructs all or part of an SQL command using externally-influenced input from an upstream component, but it
does not neutralize or incorrectly neutralizes special elements that could modify the intended SQL command when it is sent to a
downstream component.

Extended Description

Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs
to be interpreted as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to
insert additional statements that modify the back-end database, possibly including execution of system commands.

SQL injection has become a common issue with database-driven web sites. The flaw is easily detected, and easily exploited, and
as such, any site or software package with even a minimal user base is likely to be subject to an attempted attack of this kind.
This flaw depends on the fact that SQL makes no real distinction between the control and data planes.

¥ Time of Introduction

¢ Architecture and Design
¢ Implementation
¢ Operation

v Applicable Platforms

Languages
All

Technol Classes
Database-Server

MOST DANGEROUS
SOFTWARE
ERRORS

Search by ID: [©

Status: Draft

(&

ﬂ P cwe.mitre.org/data/definitions/78.html

@ Most Visited ~

f https:/ fsfile—-mc...

@ Gertting Started

c] (B~ Google Q) (|- E]

ad Google Analytics

Q£

Common Weakness Enumeration
A Community-Developed Dictionary of Software Weakness Types

CV/SS.
CQWRAE

TOP 25

MOST DANGEROUS
SOFTWARE
ERRORS

=

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents
FAQs
Community

Use B Citations
SwA On-Ramp
T-Shirt

Discussion List
Discussion Archives

Contact Us

CWSsSs

CWRAF
CWE/SANS Top 25
Compatibility

Requirements

Coverage Claims
Representation

Compatible Products
Make a Declaration

Calendar

Free Newsletter

Search the Site

© 2013 The MITRE Corporation. All rights reserved.

CWE-78: Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

Improper Neutralization of Special Elements used in an OS Command ("0S Command

Weakness ID: 78 rWeakness Base)

v Description

Description Summary

Injection')

Status: Draft

The software constructs
component, but it does 1
command when it is sen

Extended Description
This could allow attacket
weakness can lead to a
operating system, such {
allow the attacker to sps¢g
privileges that the attach
the principle of least priy
that increases the amou

There are at least two s|

1. The application ir
externally-suppli
system("nslooku
as an argument.
remove comman
arguments, whic

2. The application a
commands to usq
example, the pro
user. If the COM
programs. If the
might not be ablg

From a weakness standg
programmer clearly inte
executed. In the second
untrusted party, but the
can provide input.

* Alternate Terms

¥ Common Consequences

Scope Effect

Confidentiality Technical Impact: Execute unauthorized code or commands; DoS: crash / exit / restart; Read files or directories; Modify
Integrity files or directories; Read application data; Modify application data; Hide activities

Availability Attackers could execute unauthorized commands, which could then be used to disable the

Non-Repudiation software, or read and modify data for which the attacker does not have permissions to access
directly. Since the targeted application is directly executing the commands instead of the attacker,
any malicious activities may appear to come from the application or the application's owner.

¥ Likelihood of Exploit
High
¥ Detection Methods

Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools use data flow
analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being performed, leading
to false positives - i.e., warnings that do not have any security consequences or require any code changes.
Automated static analysis might not be able to detect the usage of custom API functions or third-party libraries
that indirectly invoke OS commands, leading to false negatives - especially if the API/library code is not available
for analysis.

This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.
Effectiveness: Moderate

Manual Static Analysis

Since this weakness does not typically appear frequently within a single software package, manual white box
techniques may be able to provide sufficient code coverage and reduction of false positives if all potentially-
vulnerable operations can be assessed within limited time constraints.

Effectiveness: High

Technical Impacts — ao
Common Weakness Risk Analysis Framework (CWRAF)

Modify data

Read data

DoS: unreliable execution
DoS: resource consumption

Eé%Cng%Hgauthorized code or

Gain privileges / assume identity
Bypass protection mechanism
Hide activities

MITRE

31

Engineering For Attack — ISO/IEC Technical Report 20004
Refining Software Vulnerability Analysis Under ISO/IEC 15049 and ISO/IEC 18045

Known Attack Weaknesses Controls* Technical Operational
Threat Patterns (CWESs) System & _ Impacts Impacts
Actors (CAPECS) System Security
Trades
% G WEEVGEEEEE T Item Q---: —e Impact
|
|

% Weakness - |tem *1-

Weakness

?

—=® \Weakness =9 [tem o

* Controls include architecture choices, design choices, added security
functions, activities & processes, physical decomposition choices, code
assessments, design reviews, dynamic testing, and pen testing
© 2013 The MITRE Corporation. All rights reserved. MITRE

Utilizing Coverage Claims ~

CWE's a capability
claims to cover

Code
Review
Static
Analysis
Tool A
. Most
Static Important
Analysis Weaknesses
Tool B (CWE’s)
Pen O | | |
Testing Which static analysis
Services

| care about?
hts reserved MITRE

tools and Pen Testing
services find the CWE'’s

© 2013 The MITRE CorporatioMs

Leveraging and Managing to take Advantage of 33
the Multiple Perspectives of Analysis

e Null Pointer Dereference

e Threading Issues

¢ Issues in Dead Code

e Insecure Crypto Functions

e Environment Configuration Issues
e Issues in integrations of modules
¢ Runtime Privileges Issues

e Protocol Parser/Serializer Issues
e Issues in 3™ party components

Analysis

Application Logic Issues

¢ SQL Injection
¢ Cross Site Scripting
e HTTP Response Splitting

¢ OS Commanding
e LDAP Injection

© 2013 The MITRE Corporation. All rights reserved.

MITRE

Leveraging and Managing to take Advantage of .
the Multiple Perspectives of Analysis

Different perspectives are effective at finding different types of weaknesses
Some are good at finding the cause and some at finding the effect

Static Penetration Data Code Architecture
Code Test Security Review Risk
Analysis Analysis Analysis
Cross-Site Scripting (XSS) X X X
SQL Injection X X X
Insufficient Authorization Controls X X X X
Broken Authentication and Session Management X X X X
Information Leakage X X X
Improper Error Handling X
Insecure Use of Cryptography X X X
Cross Site Request Forgery (CSRF) X X
Denial of Service X X X X
Poor Coding Practices X X

© 2013 The MITRE Corporation. All rights reserved.

MITRE

Notio

Archi
Anal

re | Design
Review

source
Code
Static
Analysis

Binary
Static
Analysis

Automate
Dynamic
Analysis

Penetration
Testi

m

Red Team
Assessment

(1) Modify data

(2) Read Data

lecture

(3) DoS: unreliable
execution

h

(4) DoS: resource
consumption

F

(5) Execute
unauthorized
code or
commands

(6) Gain privileges
/ assume identity

and Design

(7) Bypass
protection
mechanism

(8) Hide activities

Review of Ar

Review of Live Syste

Not'\o“a\

Vulnerability Analysis Focus By Phase and Impact

(1) Modify data

Source Automate
Architecture Design Code Binary Static Dynamic Penetration Red Team
Analysis Review Static Analysis Analysis Testing Assessment
Analysis
CWE-23 | CWE-23 CWE-131 | CWE-131 CWE-311 CWE-311 CWE-311

Relative Path

Incorrect Calculation of

Missing Encryption of Sensitive Data

Traversal Buffer Size

(2) Read Data CWE-14 | CWE-14 | CWE-129 | CWE-129 | CWE-209 CWE-209 CWE-209
Compiler Removal of Improper Validation of Information Exposure Through an
Buffer Clearing Array Index Error Messages
(3) DoS: unreliable | CWE-36 | CWE-36 | CWE-476 | CWE-476 | CWE-406 CWE-406 CWE-406
execution Absolute Path Null Pointer o
Network Amplification
Traversal Dereference
|

(4) DoS: resource CWE-395 | CWE-395 § CWE-190 | CWE-190 CWE-412 CWE-412 CWE-412
consumption Use of

NullPointerException

Integer Overflow

Unrestricted Externally Accessible Lock

(5) Execute CWE-88 CWE-88 CWE-120 | CWE-120 CWE-120 CWE-79 CWE-79
unauthorized
code or Argument Injection Buffer Overflow Cross-site Scripting
commands
(6) Gain privileges CWE-96 CWE-96 CWE-489 | CWE-489 CWE-309 CWE-309 CWE-309
[assume identity Static Code Leftover Debug Code Use of Password System for Primary
Injection Authentication
(7) Bypas S CWE-89 CWE-89 CWE-357 | CWE-357 CWE-665 CWE-665 CWE-665
prOteCUQn SQL Injection Insufficient Ul Warning Improper Initialization
mechanism of Dangerous
|
(8) Hide activities CWE-78 CWE-78 CWE-168 | CWE-168 CWE-444 CWE-444 CWE-444
oS C_:om_mand Improper Hgndling of HTTP Request Smuggling
Injection Inconsistent

Impacts by Detection Method

=
This table is incomplete, because many CWE entries do not have a detection method listed. N Otl o n a I
. Automated Automated Automated Static . Manual Manua.l Mam.lal White
Technical Impact Analvsis | Dvnamic Analvsis Analvsis Black Box |Fuzzing Analvsis Dynamic Static |Other Box
y I d d y Analysis Analysis
Execute 18,79,98, 120,129, |79, 129, 134,
unauthorized code or %&%&m’m 131, 134,190,798, (190, 494, El)_g’ %(9)’ %’5 476,798 78,798
commands — 805 698, 798 S
Gain pn.vﬂegles/ 798 259,798 259 798 798, 807 | 628
assume identity
18,89,129,131, |18,179,89,129,131, 14,79, 129, 89,131,209, (209,404, 663,

Read deta 200301320 Togg aa, 665 134,798 134, 319, 798 AL |98 B1% 1
Modify data 311,327 78,89,129,131 |78,89, 129,131, 190 (129, 190, 319 % %@ 18
DoS: unreliable 18,120,129, 131, |18,120,129, 131, 120, 131, 10,
exceution 20,476, 665,805 190,400,805 [P0 A0 g e B
DoS: resource 120, 400, 404, 770, | 120, 190, 400, 770, 400,
consumption 805 805 0 770 120, 130, 805 1404 1 4l2
Bypass protection 89,400,665 [19,89,190,400,798 (2 18 iy oo 1o lges, 708 (198,807 14,7
mechanism 190, 733,798
Hide activities 321 8 8 321 8

198,484,
Other 400, 404 400,798 194,698, |40 |44 TR T e) e

733,798 807 3

38

Planning to Leverage “State of the Art Resource” (SOAR):
Software Table of “Verification Methods”

- . e

SwWA and Systems Development (example)

~N

Abuse Case
Development

Application Security Code
Review (developed and

Gather All of the
Evidence for the

Cyber purchased), Penetration Assurance Case

Threat/ Testing & Abuse Case and Get It Approved

Attack Driven Testing

Analysis \ |

{(Program V
A B \JInitiation) C 10C FOC

Concept | Technology | System Development Production & Operations &

Refinement | Development & Demonstration Deployment Support
and Systems — =5

c .

uﬂ?ﬂ?ﬂ Design Q E:ghaegs LRIFNOT&E O E:ﬂ:ﬁ“

Pre-Systems Acquisition Systems Acquisition Sustainment

Attack Analysis against

Supply Chain &

Application Architecture

Security Review

Attack-based
Application Design
Security Review

Making
Security
Measurable™

Application Security Code

Abuse Case Driven Testing of

Review, Penetration Testing &

Maintenance Updates

*|deally Insert SwA before RFP release in Analysis of Alternatives

oy r-
e T L
BT A
» ~
i)
o
5 -
.
£ a.
’,‘:‘*—Jﬂ
—ly
::.a‘,’-:_" "; = .’p _'-— ’
e - -
- Y
- -
EALES,)
e o
- - '_‘

"}’.E.‘/";:.-

. ’/Jz"-!:‘-':' ¥
7 /“{;}3.. ;'-f
Improper Neutralization SARGEE)
of Input During Web Page : Ay
Generation (CWE-79)

Cross-site Scripting
(XSS) Attack (CAPEC-86)

4

<

& o
SN A Y
e 1 7 Vs
- [:
et
i 'Qf. -~ 5 J- s
&‘_—.- A .
e Y S <
J — A P RN
- /' y 4 54
- vy . L
‘. -

g Improper Neutralization of
R Y " 2 Special Elements used in
T T e § | an SQL Command (CWE-809)

o # o
P / e '6.4- 10-

Software, Network Traffic, Physical, Social
Engineering, and Supply Chain Attack Patterns

m Common Attack Pattern Enumeration and Classification

« A Community Knowledge Resource for Building Secure Software

Home > CAPEC List > CAPEC-1000: Mechanism of Attack (Release 1.7.1)

I3 CAPEC-1000: Mechanism of Attack Definition

Full CAPEC Dictionary

Graph

List

Slice

XML.zip

Methods of Attack View Mechanism of Attack

Status: Draft

[epdies View ID: 1000 (View: Graph)
+ View Data

Documents

Resources View Structure: Graph
View Objective

Relabed Activities

Collaboration List ¥ Relationships

T-Shirt Nature Type ID Name Description
HasMember & 118 Data Leakage Attacks

Calendar HasMember @ 119 Resource Depletion

el Lt HasMember & 152 Injection (Injecting Control Plane content through the Data Plane)
HasMember @ 156 Spoofing

ngr_am HasMember @ 172 Time and State Attacks

Requirements

HasMember @ 210 Abuse of Functionality
HasMember @ 223 Probabilistic Technigues
Search the Site HasMember (® 225 Exploitation of Authentication
HasMember @ 232 Exploitation of Privilege/Trust
HasMember @ 255 Data Structure Attacks
HasMember (® 262 Resource Manipulation
HasMember [286 Network Reconnaissance
HasMember B} 403 Soclal Engineering Attacks
HasMember & 436 Physical Security Attacks
HasMember [437 Supply Chain Attacks

Make a Declaration

CAPECs in this view Total CAPECs
Total 412 out of 474
Views 0 outof B
Categories 19 out of 68
Attack Patterns 400 out of 400

Page Last Updated: May 04, 2012

MITRE

W
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

Sharing knowledge of our opponents and watching the plays
develop, we can make the saves that protect our networks and
the software running on them.

® 00

CWE - Getting Started in Software Assurance (SwA)

J[f CWE - Getting Started in Softwa...

Q4

L+l

TOP 25

Common Weakness Enumeration
A Community-Developed Dictionary of Software Weakness Types

MOST DANGEROUS
SOFTWARE
ERRORS

CV/SS.
QWRAE

=

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents
FAQs
Community
SwA On-Ramp
T-Shirt
Discussion List

Discussion Archives
Contact Us

CWsSs

CWRAF
CWE/SANS Top 25
Compatibility
Requirements

Coverage Claims
Representation

Compatible Products
Make a Declaration

Calendar

Free Newsletter
Search the Site

Getting Started in Software Assurance (SwA)

Recognizing that your software environment and program’s software supply chain has
weaknesses that may be exploited by attackers as operational vulnerabilities is a major step
in securing your software supply chain. However, this step pales in comparison to the
enormity of securing the entire supply chain for your software. The key to improving your
software assurance is to make incremental improvements in the security of the software in
your supply chain. No single remedy will absolve or mitigate all of the weaknesses in your
software, or the risk. Several methods, tools, and culture changes will be required in concert
to build a secure supply chain to cover the known-unknown weaknesses. There is no crystal
ball, or magic wand, you can use to ensure your software is absolutely secure against the
unknown-unknown weaknesses. However, you can take steps to reduce the risk and
exposure of your software and users to new, or existing, software vulnerabilities.

This section of the CWE Web site introduces specific steps you can take to assess your
individual software assurance situation and compose a tailored plan to strengthen your
assurance of the integrity, reliability, and robustness of your software supply chain. Learn
more by following the links below:

Engineering for Attacks

Software Quality

Prioritizing Common Weaknesses Based Upon Your Environment
Manageable Steps

Software Assurance Pocket Guide Series

Staying Informed

Finding More Information about Software Assurance

Page Last Updated: May 13, 2012

Section Contents

Software Assurance
Engineering for Attacks
Software Quality
Prioritizing Weaknesses
Manageable Steps
Pocket Guides
Staying Informed
Finding More Information

Discussion List
CWE Newsletter
Terms of Use

MITRE

CWE is co-sponsored by the office of Cybersecurity and Communications at the U.S. Department of Homeland Security.

This Web site is sponsored and managed by The MITRE Corporation to enable stakeholder collaboration. Copyright © 2006-2013, The MITRE
Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation.

P ™ £ fva n

Privacy policy
Terms of use

Contact us

Measurable

44

Questions?

ramartin@mitre.org

© 2013 The MITRE Corporation. All rights reserved. MITRE

