
Differences in Cognitive Skills
Required for Systems Engineering

Versus Software Engineering

Tom McDermott, Dr. Dennis Folds
Georgia Institute of Technology

October 31, 2013

• Georgia Tech Systems Engineering Education
Program

• Several hundred students widely diversified across
government, aerospace, and commercial industry

• Generally all with >5 years experience in engineering
fields, 5-30 year breadth of experience levels and roles

• Observation: when dealing with open-ended problems
and complex architectures, software trained students
are more adept at grasping SE concepts

• Premise: experience and training in SE fields does not
emphasize abstract thought, software does better

• Is there a model we can promote, based on role?

Premise: Are we adequately preparing
systems engineers for today’s complexity?

General history of SE disciplines

“Systems Engineering”
(Bell Labs, Gilman)

SE Process

SE Discipline

Systems
Management

Life Cycle
Engineering

SoS
Engineering

1940’s 1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s

Control Theory &
Cybernetics

(Weiner)

Operations
Research
(Morse)

General
Systems
Theory

(Bertalanffy)

Organizational
Systems
(Ackoff)

System
Dynamics

(Forrester)

Soft Systems
(Checkland)

Theory of
Constraints
(Goldratt)

Complex
Systems
(Simon)

The Computer

“Software
Engineering”

Software
Languages

Structured
Programming

Object
Oriented

design

Software
Lifecycle

Processes

Modern
Software

Design

System
Engineering

System
Sciences

Software
Engineering

UML

SysML

• Distinction between concrete and abstract thought
predates Psychology as a science

• Many definitions of “abstraction” in the research
literature

• Representative definition: the “process of identifying a
set of invariant central characteristics of a thing”
(Burgoon, Henderson, & Markman, 2013)

• Generally thought of as a useful process

• Marker of cognitive development in children

• Some disorders manifest in incorrect abstractions

Concrete and Abstract Thinking

• Generalization of acquired knowledge to novel
situations (e.g., wayfinding, categorization)

• Anticipation / prediction of future conditions or events

• Basis for creativity and innovation

• But possible errors due to inappropriate stereotypes,
extrapolations, etc.

Benefits of Abstraction

A Continuum, not a Dichotomy

Analysis Framework - Cynefin

David Snowden, The Origins Of Cynefin, Copyright © 2007-10
Cognitive Edge Pte Ltd. All Rights Reserved.

O
R
D
E
R

U
N
O
R
D
E
R

Cynefin Dynamics

Experts

Practice

Learning

Innovation

David Snowden and Cynthia Kurtz, The New Dynamics Of Strategy,
IBM Systems Journal, Vol. 42, No. 3, 2003.

Divergent & Convergent Thinking

Basadur, M.S., Graen, G.B., and Green, S.G., “Training in Creative Problem Solving: Effects on Ideation and Problem Finding
in an Applied Research Organization,” Organizational Behavior and Human Performance, 30, 41-70., 1982

Problem
Finding

Fact
Finding

Planning

Evaluating

Acceptance

Action

Idea
Finding

Problem
Definition

Where is SE?

Basadur, M.S., Graen, G.B., and Green, S.G., “Training in Creative Problem Solving: Effects on Ideation and Problem Finding
in an Applied Research Organization,” Organizational Behavior and Human Performance, 30, 41-70., 1882

SE BoK

SW BoK

SoSE BoK

• Impossible or impractical machines now feasible

• Design (or Requirements) can be changed without
retooling or remanufacturing

• Design is separated from physical realization

• Design becomes abstract concept

• Process is separated from other disciplines

• Heuristics:

• “Software is never finished”

• “Software never costs less”

The Software Revolution

Software’s Role in a System

• SCALE - Generation, storage, manipulation and
interpretation of large volumes of information

• SIMPLIFICATION - Human interfaces that abstract
away the underlying hardware scale

• POLICY - Control of complex, non-linear systems

• AUTOMATION - of operator provided functions

• AUTONOMY - Adaption of the system to the behavior
of the environment and users

• ADAPTATION - Customized user capability and
experience

“The essence of a software entity is a construct of interlocking
constructs: data sets, relationships among data items, algorithms, and

invocations of functions. This essence is abstract, in that the
conceptual construct is the same under many representations. It is

nonetheless highly precise and richly detailed.” (Fred Brooks)

• The essence of software, 4 differentiating properties:

1. Complexity (# of states, lack of repetition)

2. Conformity (to other man made constructs)

3. Changeability (emergence, infinite life)

4. Invisibility (intangible, unvisualizable)

Software has Unique Properties

Brooks, F.P., “No Silver Bullet – Essence and Accident in Software Engineering,” Computer, 20, 4-10., 1987

• A central tenet of classical systems engineering is that
all systems can be viewed in hierarchies

• A system is composed of subsystems that are composed
of smaller units

• One persons component is another’s system

• Object-oriented software construction observes two
tenets:

• Hierarchy – via hierarchical
types or modules

• Abstraction – via abstract types
or classes

Traditional Architecting and Hierarchy

• The hardware and software design of such systems
sits in the realm of best practices

• The system of systems
design will require deep
understanding of:

• Complexity - swarm behaviors

• Conformity - man-unmanned teaming

• Changeability - emergence

• Invisibility – behaviors observable only in usage

Case Study – Future Autonomous
Systems

• Software Engineering Body of Knowledge (SWEBOK V3):

• Computing Foundations

• Problem solving techniques

• Algorithms and complexity

• Abstraction

• Data structure and representation

• Software Design and Construction

• Software structure and architecture

• Software construction

• Software Programming

• Abstraction

• Information hiding

• Object-oriented programming

SEBOK and SWEBOK

“Great designs come from great designers. Software
construction is a creative process.” (Fred Brooks)

• System Engineering Body of Knowledge (SEBOK V1.1):
• Systems Thinking

• Problem solving techniques

• Patterns and complexity

• System Modeling

• System modeling concepts =>

• System Architecture

• Logical and physical architecture =>

• System of systems (complexity)

• Conops & Scenarios (conformity)

• Business models (changeability)

• Views & viewpoints (invisibility)

SEBOK and SWEBOK

• Computing foundations
• Software design & construction
• Software programming

• Architecture construction: an
architecture represents a set of
abstracted designs of the system

• Specific recommendations:

• Systems thinking

• Case studies, applied throughout the curriculum

• Capstone projects

• Systems modeling or Software systems

• Hierarchy and abstraction

• Object-oriented design

• Programming languages

• SysML, UML

• Systems architecture

• Fundamentals

• Complexity & Systems-of-systems

• Business and enterprise

• Evaluation methods

Systems Engineering Curricula

www.pmase.gatech.edu

http://www.pmase.gatech.edu/

