
© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Lifecycle Modeling Language (LML) –
A Technique for Enhancing
Reliability, Availability, and
Maintainability (RAM) throughout
the Lifecycle

Steven H. Dam, Ph.D., ESEP, President,
SPEC Innovations, 571-485-7805
steven.dam@specinnovations.com

October 2013

1

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Overview

 Why is RAM often overlooked until late in

the lifecycle?

 What is LML?

 How does LML help enhance RAM?

 What processes and tools work with LML

to enhance RAM?

 Summary

2

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Why is RAM often overlooked until

late in the lifecycle?

• RAM analysis requires details to estimate
uncertainties in estimated values and
requirements, which takes time and money

• As such, it often is not addressed at all until
the detailed design phase

• However, RAM should be part of the overall
scenario analysis at the very beginning of the
concept development phase

3

So what happens? Someone arbitrarily
assigns the number of “9’s” needed.

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Example “Requirements” for
FireSAT
• Reliability: “The FireSAT spacecraft shall have an

on-orbit lifetime of at least five years”

• Availability: “The FireSAT spacecraft shall have an
operational availability of 98%, excluding outages
due to weather, with a maximum continuous
outage of no more than 72 hours”

• Maintainability: “The FireSAT spacecraft shall
require the removal (or opening) of no more than
ten fasteners (panels) to replace any Line
Replaceable Unit (LRU) … during pre-launch
ground operations”

4

From Applied Space Systems Engineering, p. 113

Where did these come from? Were they the
result of analyses or are they just best guesses?

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Lots of metrics to take into account

• It’s not just
the RAM
metrics –
it’s all the
“illities”

• How can we
capture and
trace all
these
metrics?

5

From Applied Space Systems Engineering, p. 189

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

What Is LML?

6

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Lifecycle Modeling Language (LML)

• LML combines the logical constructs with
an ontology to capture information
– SysML – mainly constructs – limited ontology

– DoDAF Metamodel 2.0 (DM2) ontology only

• LML simplifies both the “constructs” and
ontology to make them more complete,
yet easier to use

• Goal: A language that works across the
full lifecycle

7

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Documentation Entities

Parametric and Program Entities

LML Models

8

Functional
Model

Physical Model

Primary Entities
• Asset/Resource
• Connection

Primary Entities
• Action
• Input/Output

Statement/
Requirements

Cost Time

Characteristic/
Measure

Location

Artifact

Risk

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

LML Taxonomy Simplifies and Enhances the
Semantic Schema Elements

• Action
• Artifact
• Asset

– Resource

• Characteristic
– Measure

• Connection
– Logical
– Conduit

• Cost
• Input/Output

• Location
– Physical
– Orbital
– Virtual

• Risk
• Software Interface
• Statement

– Requirement
– Decision

• Time

9

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Action Artifact
Asset

(Resource)

Characteristic

(Measure)

Connection

(Conduit,

Logical)

Cost Decision Input/Output

Location

(Orbital,

Physical,

Virtual)

Risk
Statement

(Requirement)
Time

Action
decomposed by*

related to*
references

(consumes)

performed by

(produces)

(seizes)

specified by - incurs
enables

results in

generates

receives
located at

causes

mitigates

resolves

(satisfies)

traced from

(verifies)

occurs

Artifact referenced by
decomposed by*

related to*
referenced by

referenced by

specified by

defines protocol for

referenced by

incurs

referenced by

enables

referenced by

results in

referenced by located at

causes

mitigates

referenced by

resolves

referenced by

(satisfies)

source of

traced from

(verifies)

occurs

Asset

(Resource)

(consumed by)

performs

(produced by)

(seized by)

references

decomposed by*

orbited by*

related to*

specified by connected by incurs

enables

made

responds to

results in

- located at

causes

mitigates

resolves

(satisfies)

traced from

(verifies)

occurs

Characteristic

(Measure)
specifies

references

specifies
specifies

decomposed by*

related to*

specified by*

specifies
incurs

specifies

enables

results in

specifies

specifies
located at

specifies

causes

mitigates

resolves

specifies

(satisfies)

spacifies

traced from

(verifies)

occurs

specifies

Connection

(Conduit,

Logical)

-
defined protocol by

references
connects to specified by

decomposed by*

joined by*

related to*

incurs
enables

results in
transfers located at

causes

mitigates

resolves

(satisfies)

traced from

(verifies)

occurs

Cost incurred by
incurred by

references
incurred by

incurred by

specified by
incurred by

decomposed by*

related to*

enables

incurred by

results in

incurred by located at

causes

incurred by

mitigates

resolves

incurred by

(satisfies)

traced from

(verifies)

occurs

Decision
enabled by

result of

enabled by

references

result of

enabled by

made by

responded by

result of

enabled by

result of

specified by

enabled by

result of

enabled by

incurs

result of

decomposed by*

related to*

enabled by

result of
located at

causes

enabled by

mitigated by

result of

resolves

alternative

enabled by

traced from

result of

date resolved by

decision due

occurs

Input/Output
generated by

received by
references - specified by transferred by incurs

enables

results in

decomposed by*

related to*
located at

causes

mitigates

resolves

(satisfies)

traced from

(verifies)

occurs

Location

(Orbital,

Physical,

Logical)

locates locates locates
locates

specified by
locates locates locates locates

decomposed by*

related to*

locates

mitigates

locates

(satisfies)

traced from

(verifies)

occurs

Risk
caused by

mitigated by

resolved by

caused by

mitigated by

references

resolved by

caused by

mitigated by

resolved by

caused by

mitigated by

resolved by

specified by

caused by

mitigated by

resolved by

caused by

incurs

mitigated by

resolved by

caused by

enables

mitigated by

results in

resolved by

caused by

mitigated by

resolved by

located at

mitigated by

caused by*

decomposed by*

related to*

resolved by*

caused by

mitigated by

resolved by

occurs

mitigated by

Statement

(Requirement)

(satisfied by)

traced to

(verified by)

references

(satisified by)

sourced by

traced to

(verified by)

(satisified by)

traced to

(verified by)

(satisified by)

specified by

traced to

(verified by)

(satisified by)

traced to

(verified by)

incurs

(satisified by)

traced to

(verified by)

alternative of

enables

traced to

results in

(satisified by)

traced to

(verified by)

located at

(satisfied by)

traced to

(verified by)

causes

mitigates

resolves

decomposed by*

traced to*

related to*

occurs

(satisified by)

(verified by)

Time occurred by occurred by occurred by
occurred by

specified by
occurred by occurred by

date resolves

decided by

occurred by

occurred by occurred by
occurred by

mitigates

occurred by

(satisfies)

(verifies)

decomposed by*

related to*

LML Relationships Provide Linkage
Needed Between the Classes • decomposed

by/decomposes
• orbited by/orbits
• related to/relates

10

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

LML Action Diagram Captures
Functional and Data Flow

11

O
R

Which path?

Action in
Parallel

Action

Start End

Trigger

S
Y

N
C

 Input/Output 2
Synchronize
Information

1.2

1.3

1.7

Action

1.1 Optional Action 2 in
Loop

1.6

External Input

External
Output

Input/Output 3
L

O
O

P

Exit Criteria

1.5

Optional Action 1

1.4

Input/Output 1

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Uses Common Diagrams for Every
Class
• Physical Block (Asset)

Diagrams
– With option for icon

substitution

• Interface Diagrams
– N2 (Assets or Actions)

• Hierarchy Diagrams
– Automatically color coded

by class

• Time Diagrams
– Gantt Charts
– Timeline Diagram

• Location Diagrams
– Maps for Earth
– Orbital charts

• Class/Block Definition
Diagram
– Data modeling

• Risk Chart
– Standard risk/opportunity

chart

• Organization Charts
– Showing lines of

communication, as well as
lines of authority

• Pie/Bar/Line Charts
– For cost and performance

12

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

How Does LML Help Enhance
RAM?

13

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

How does LML help enhance RAM?

• LML was designed with all aspects of systems
engineering across the lifecycle

• LML provides:
– Asset/Resource entities, Asset Diagrams, and

Characteristics/Measures entities to capture physical
information about the system

– Action entities, Action Diagrams, and Input/Output to
capture and model processes

– Action Diagrams can be simulated to include
Resource use

• As such, LML can support the analyses needed to
derive key RAM metrics, such as mean time
between failures (MTFB)

14

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Example: Modeling for Reliability

• Use of
redundancy
to enhance
reliability

• Modeling
multiple
computers
that “vote” on
a value

15

Asset Diagram

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Example continued
• Functional

model
equivalent using
Action Diagram

• Timing provided
for each
computer can
be a random
distribution, as
can failure
modes

16

Action Diagram

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Simulation of Example

• Discrete Event Simulation of the Action Diagram
can show the random nature of timing

• Sensitivity to failure modes can then be identified
and mitigated

17

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Monte Carlo simulation of Action
Diagram supports reliability analysis

• Executing the model with random time
distributions provides way to derive key metric
requirements

18

Navigate FireSAT

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

FireSAT Failure Mode Hierarchy

• This hierarchy
comes from a
series of Action
Diagrams that
model the failure
processes

19

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Action Modeling for FMECA

• Modeling
failure
modes with
Action
Diagram

20

Level 1

Level 2

Level 3

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Execution of FMECA Model

• Monte Carlo simulation shows notional failure distribution
for mission

• Realistic probability can now be used to assess the potential
impacts of these failure on the systems

21

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

What Processes and Tools Work
with LML

• We use a “middle-out” process that
begins with functional analysis (scenarios)
and derives the functional and
performance requirements via simulation

• Tools require both discrete event and
Monte Carlo simulations of the LML
Action Diagram

22

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

14. Provide Options

“Middle-Out” Process

23

5. Develop the Operational Context Diagram

15. Conduct Trade-off Analyses

6. Develop Operational Scenarios

1. Capture and Analyze Related Artifacts

4. Capture Constraints

3. Identify Existing/Planned Systems

2. Identify Assumptions

7. Derive Functional Behavior

8. Derive Assets

10. Prepare Interface Diagrams

12. Perform Dynamic Analysis

11. Define Resources, Error Detection & Recovery

13. Develop Operational Demonstration Master Plan

16. Generate Operational and System Architecture Graphics, Briefings and Reports

Requirements Analysis

Functional Analysis

Synthesis

System Analysis
and Control

This implementation of the middle-out approach has been
proven on a variety of architecture projects

9. Allocate Actions to Assets

Time

Context and scenarios
must include RAM
concerns

Constraints and existing
systems should include
RAM information

Demonstration plan
should include RAM-
related scenarios

Error detection &
recovery should include
failure modes analysis

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Action Modeling with Innoslate

24

Action Diagrams for functional modeling can be simulated
using discrete event and Monte Carlo techniques

© 2013 Systems and Proposal Engineering Company. All Rights Reserved

Summary

• LML provides the necessary language
entities to capture the RAM-related
information

• The accompanying tool must implement
the language and have the capability to
extend it to meet any specific needs

• The process used should emphasize all
the “ilities” including RAM

25

