

Effects of System Prototype Demonstrations on DoD Weapon Systems Development

NDIA 16th Annual Systems Engineering Conference October 28 – 31, 2013

Edward J. Copeland

PhD Student, Engineering Management & Systems Engineering Department

The George Washington University

Additional Authors: Dr. Thomas Holzer

Dr. Timothy Eveleigh Dr. Shahryar Sarkani

Problem Statement

The inability of DoD programs to sufficiently reduce <u>technology risk</u> **prior to entering formal systems development** has over the past 5
years contributed to a <u>13% cost growth</u> in weapon systems acquisition
and a <u>17% increase in cycle time</u> for initial operational capability.^[1]

- GAO analysis of Major Defense Acquisition Programs (MDAPs) (2007 – 2012) indicates need for additional reform in the acquisition of weapon systems
 - Avg acquisition cost increased → 38%

Avg cycle time (for IOC) increased → 37%

(Since program first full estimates)

MDAP is an ACAT I program with either:

- Est. RDT&E ≥ \$365M (FY2000 dollars); or
- Est. Production ≥ \$2.19B (FY2000 dollars)

RDT&E Budget Continues Decline

Research Objective & Focus

Conceptual Research Objective

Establish a framework to measure the effects that early system
 prototype demo's have on weapon systems development

System prototype demo's in Technology
Development → EMD Program Performance

Elements to be Addressed

- Return-on-Investment for reducing technology risk
- Impact on technology maturity of enabling critical technologies
- Impact on requirements definition & system allocated baseline
- Impact on achieving system design maturity

Technology Development Guidance (Key Historical Events)

Date	Source	Significance
1970	Fitzhugh Commission	✓ Increased use of prototypes and design competition "Fly-Before-You-Buy"
1986	Packard Commission	✓ Prototypes before full-scale development✓ Early demos of tech feasibility & operational utility
2006 & 2008	NDAA (U.S.C. 2366b)	 ✓ All critical technologies demo in relevant environment ***Technology Maturity is Law *** TRL 6
2007	USD(AT&L), Prototyping & Competition (Young)	 ✓ Competing teams w/ system prototypes through Milestone B
2009	WSARA	✓ Competitive prototype demos prior to EMD✓ Preliminary Design Review prior to MS-B
2011	USD(AT&L), Improve Milestone Effect. (Kendall)	✓ Pre-EMD Review w/ pre-TRA as entry criteria
2012	USD(AT&L), Better Buying Power 2.0 (Kendall)	✓ Promote effective competition✓ Focus TD Phase on true risk reduction

Technology Development "Key Enabler to Reducing Technology Risk"

- <u>Purpose</u>: Reduce technology risk, determine and mature technologies ... and perform system level prototype demos of critical technologies in a relevant environment (TRL 6)
 - Technology maturity is a major indicator of design complexity, adequacy of requirements, and an indicator to program risk
 - System prototype demonstrations play a pivotal role to implementing and achieving a successful program Technology Development Strategy
 - "Competitive" system prototype demonstrations provide an added dimension or multiplier through the perceived incentive of competition

Defense Acquisition Management System "Technology Development Phase" [4]

CTE = Critical Technology Element

PDR = Preliminary Design Review

SFR = System Functional Review

TDS = Technology Development Strategy

TRA = Technology Readiness Level

EMD = Engineering, Manufacturing & Development

SEP = Systems Engineering Plan

SRR = System Requirements Review

TMA = Technology Maturity Assessment

TRL = Technology Readiness Level [4] DoD Instruction 5000.02

_

CTEs → System Prototype → Demonstration [5][6][7]

- Critical Technology Element (CTE): Technologies required to meet operational requirements that are considered either new or novel or poses major technological risk
- System Prototype: Integrated components that are representative of the actual system
 - Very close to form, fit, and function
 - A physical or virtual model (Hardware/Software)
- System Prototype Demonstration: Tests to show technical or manufacturing feasibility or military utility of a technology or process, concept, end item, or system
 - Venues include: Laboratory; dynamic platform; high fidelity live, virtual, and/or constructive simulations; and physics based modeling
 - Used to reduce technological risk and uncertainty of fully integrated system
 - Benefits include: technology maturity, requirements refinement, design stability, and improved program performance (cost & schedule)
- [5] DoD 2009 TRA Deskbook
- [6] DoD Acquisition Guidebook

System Prototype Demonstrations "Relevant Environment → TRL 6"

Relevant environment varies dependent upon system performance requirements and worse case (threshold) mission relatable scenarios

Physical, logical, data, security & user environments

 System prototype demo must address worse case mission relevant environment to minimize technology risk to EMD

DoD Major Defense Acquisition Programs (MDAPs) Portfolio

—Dollars (FY2012 Dollars in Trillions)

[1] GAO-13-294SP [8] GAO-12-400SP

[9] GAO-11-233SP

[10] GAO-09-326SP [11] GAO-08-467SP

Red = Total Acquisition Cost Growth **Yellow** = Research, Test, & Evaluation Cost Growth Green = Total Cycle Time Growth

Technology Maturity (Driver for System Prototype Demo)

Technology Maturity Entering System Development (Milestone B) [1][8][9][13]

Year Program Entered System Development

■ CTEs Immature (at least 1 < TRL 6)</p>
■ CTEs Nearing Mature (TRL 6)
■ CTEs Mature (TRL 7)

[12] Public Law (U.S.C. 2366b) CTE = Critical Technology Element TRL = Technology Readiness Level ¹¹ [13] GAO-10-388SP; [9] GAO-11-233SP; [8] GAO-12-400SP; [1] GAO-13-294SP

Technology Development Planning (PDR & Competitive Prototypes)

Weapon Systems Acquisition Reform Act of 2009^[14]
 *** Prior to entering EMD ***

"Current" MDAPs (EMD)

(sample size = 40)

2012 Portfolio^[1] "Future" MDAPs (TD)

(sample size = 17)

Preliminary Design Review

95% Conducted a PDR (38 programs)

29% Conducted PDR prior to MS-B

- → 15% post WSARA
- → Avg 18 mo prior to MS-B

71% Held/Plan PDR post MS-B

→ Avg 24 mo post CA

Preliminary Design Review

59% Plan PDR prior to MS-B (10 programs)

29% PDR unknown since MS-B is TBD

12% Plan PDR post MS-B (waiver granted)

Competitive Prototypes

65% Competitive Prototypes Planned

29% Seeking Waiver

6% Undecided Strategy

Impacts Due to Changing Requirements

Change in Key Program Performance (KPP) Requirements (Impact to Average Acquisition Cost Growth) [9][10]

	Avg Cycle Time Growth (months)				
	2008	2010			
w/ KPP Changes	30	27 - 40			
w/o KPP Changes	15	8			

Better alignment w/ critical technologies (in TD) could Improve program performance

Concluding Remarks

- Today's economic environment requires smart & effective systems engineering to continue to meet the warfighter's needs and improve DoD buying power
- Pre-EMD system prototype demos can play a significant role in reducing technology risk for system development

Research will further analyze key attributes of system prototype demos for correlation and significance to program performance

Back-Up Slides

Contact Information:

Edward J. Copeland

ec4355@gwu.edu

(240) 561-8895

Acronyms

ACAT	Acquisition Category	MDAP	Major Defense Acquisition Program	SRR	System Requirements Review
AS	Acquisition Strategy	MSA	Materiel Solution Analysis	S&T	Science & Technology
CDD	Capability Development Document	NASA	National Aeronautics and Space Administration	TD	Technology Development
СТЕ	Critical Technology Element	O&S	Operations & Supportability	TDS	Technology Development Strategy
DoD	Department of Defense	P&D	Production & Deployment	TMA	Technology Maturity Assessment
EMD	Engineering, Manufacturing, and Development	PDR	Preliminary Design Review	TOA	Total Obligation Authority
GAO	Government Accounting Office	RDT&E	Research, Development, Test & Evaluation	TRA	Technology Readiness Assessment
ICD	Interim Capability Document	SEP	Systems Engineering Plan	TRL	Technology Readiness Level
IOC	Initial Operational Capability	SFR	System Functional Review	USC	United States Code
КРР	Key Performance Parameter	SRD	System Requirements Document	WSARA	Weapon Systems Acquisition Reform Act

References (1 of 2)

- [1] GAO (2013). Defense Acquisitions, Assessments of Selected Weapon Programs, GAO-13-294SP, U.S. Government Accountability Office, Washington, DC.
- [2] OUSD(Comptroller) (2012). National Defense Budget Estimates For FY2013.
- [3] USNi (2013). Creating Integrated Warfighting Capabilities, United State Naval Institute, Proceedings Magazine, 139(8)1, 60-65.
- [4] Department of Defense (2008). DoD Instruction 5000.02, Operation of the Defense Acquisition System, Washington, DC.
- [5] DoD (2009). Technology Readiness Assessment Desk book, Director of Defense Research & Engineering.
- [6] DoD (2013). Defense Acquisition Guidebook, Retrieved from Defense Acquisition University Defense Acquisition Guidebook website https://acc.dau.mil.
- [7] DoD (2011). Technology Readiness Assessment Guidance, Assistant Secretary of Defense for Research and Engineering.
- [8] GAO (2012). Defense Acquisitions, Assessments of Selected Weapon Programs, GAO-12-400SP, U.S. Government Accountability Office, Washington, DC.

References (2 of 2)

[9] GAO (2011). Defense Acquisitions, Assessments of Selected Weapon Programs, GAO-11-233SP, U.S. Government Accountability Office, Washington, DC.

[10] GAO (2009). Defense Acquisitions, Assessments of Selected Weapon Programs, GAO-09-326SP, U.S. Government Accountability Office, Washington, DC.

[11] GAO (2008). Defense Acquisitions, Assessments of Selected Weapon Programs, GAO-08-467SP, U.S. Government Accountability Office, Washington, DC.

[12] Public Law 109-163 (2006). NDAA FY2006 Public Law 109-163, § 801 (codified 10 U.S.C. § 2366b)

[13] GAO (2010). Defense Acquisitions, Assessments of Selected Weapon Programs, GAO-10-388SP, U.S. Government Accountability Office, Washington, DC.

[14] Public Law 111-23 (2009). Weapon Systems Acquisition Reform Act (WSARA) of 2009.