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— Classical Design of Experiments (DOE)

— Standard Taguchi Method (STM)

— Optimal Design of Experiments (ODOE)

— Huynh's Orthogonal Array Experiment (OAE)

Main-effects-plus-two-factor-interaction (MEPTFI) model

Custom/ODOE for small boat attack (SBA) response system
— General approach of custom design
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—De |gﬁ of Experlments (DOE)

—T

— " \Whatand Why

Definitions

A DOE is a structured approach to designing and analyzing experiments in
which purposeful changes are made to multiple input variables (or factors)
to efficiently investigate the effects on an output variable (or response).

“A DOE is the specific collection of trials run to support a proposed
model.” [Donnelly, 2010]

» ALL DESIGNS ARE MODEL DEPENDENT!

Why
“There is not a single area of science and engineering that has not
successfully employed statistically designed experiments.”

[D.C. Montgomery, 2012, p. 22]

In the last twenty years, DOE has found interesting applicability in complex
Industrial and military AoA that require complex computer simulations, e.g.
Monte Carlo simulations.



Classical approach, 11t — 19t centuries
Vary one factor at a time

Foundation of DOE principles: R.A. Fisher, 1920s
Full factorial designs

Fractional factorial designs (FFDs)
¢ Reduced number of runs, e.g., 2P FFDs
¢ Confounding of main effects and interactions, i.e., biased estimates

Statistical analysis, ANOVA



-';iz_-'es|gn of Experiments (DOE),

A"Brlef Histor

= Taguchi Method, 1950s

— “...Robust Design to develop industrial processes and products whose
performance is minimally sensitive to factors causing variability at the lowest
possible cost” [American Supply Institute]

— Small set of designs for engineers and quality professionals allowing hand
calculation L ;

« 18 orthogonal arrays (OA)

« Limited set of interaction matrices and linear graphs

» Estimation of main effects by averaging appropriate
response data

ORTH IL)(-OP;JM ARRAYS
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é Focus on main effects with underlying presupposition
that interaction effects can be neglected

& Omission of statistical analysis



=5 eS|gn of Experlments (DOE)

Optimal design of experiments (ODOE)

Mathematical approach proposed by Kiefer and Wolfowitz [1959]
« DOE based on specific objective criteria rather than orthogonality
e Does not preclude OA designs

Recent growth in popularity

« Custom design approach provides flexible method to design
experiments that fit specific circumstance

« Several general-purpose statistical packages, e.g. JMP,...

Computer simulation experiments

“Brute-force computation cannot be used to explore large-scale simulation
experiments.” [Vieira Jr. et al., 2011]

New methods being developed to more efficiently design and analyze them
* Nearly Orthogonal Latin Hypercubes (NOLH)



—Hoynh-Conjectijres*

* T.V Huynh, “Orthogonal array experiment in systems engineering and architecting,”
Systems Engineering, 14(2), 2011, pp. 208-222.

= Huynh's definition of OAE
— Synonymous with Standard Taguchi Method (STM)
— Involves three main steps

Orthogonal Array Experiment (OA AN

2. Run experiments

3. Use of arithmetic averages of the responses for determining the effect of a
factor level (STM)

= Huynh conjectures

& “Application of OAEs to solve a class of engineering optimization
problems encountered in systems engineering architecting”

¢ “Optimum product or design results from the best or the optimum level for
each factor”



S iﬁ!‘—-luynh Con Jectu res Are False

——

» I[mpossibility theorem

The Huynh conjectures cannot provide meaningful results for systems and SoS
engineering and architecting problems.

> Proof

Given: “A system is a combination of interacting elements organized to achieve one or
more stated purposes. A system-of-systems is a system whose elements are themselves
systems.” [Haskins, 2011: 364]

Consequence: The appropriate modeling of interactions and their effects must be
accounted for in the engineering and architecting of systems and SoS.

Implication: The Huynh conjectures are not applicable to the engineering and
architecting of systems and SoS. QED

“Generally, when an interaction is large, the corresponding effects
have little practical meaning.” Montgomery [2012, p. 186]




Main-Effects-Plus-Two-Factor-Interaction (MEPTFI) Model

“Everything should be made as simple as
possible, but not simpler."

Einstein
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— RegressionModel’

Twéﬂ‘i;aCter Interaction Effects  _1 of

= Pareto/sparsity-of-effects principle

- Most real-world systems are driven by a few main effects and most high-
order interactions are negligible.

= MEPTFI surrogate model

\( /6% +-:E:A£ﬂu)( -+':E: :E: /3ﬂJ|U

j=11=j+1

— Y, : response for the u run

— k factors (Xq, X,, ..., X)
X;, level-setting of factor X; for the u™ run using coded design variables

— [, overall mean

— B,: main effect for factor X; at the level-setting of the ut run; specified as deviation from the
overall mean

— Bu- two-factor interaction effect between factors X; and X; at the level settings of the u™ run

— &,. error term.
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Number of degrees of freedom (d.f.)

Overall mean: 1 d.f.

Each factor X;: (n; — 1) d.f., where n; be the number of levels.
Each two-factor interaction X;*X;: (n; — 1)x(n; — 1) d.f.

Determining # distinct simulation runs

Unsaturated designs: n > # d.f.

Larger n = higher confidence in estimates of main and interaction effects
Interactions significantly increase the number of required simulation runs!
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gressmn I\/Iodel

—Matrix Form

= Model/Design matrix

Y=XB+¢
— Y. nx1 vector of the responses of the n simulation runs
— B px1 vector of the p unknown parameters of interest

— & nx1 vector of the errors for the n simulation runs

— X: model matrix. nxp matrix consisting of an n-vector of 1s and the nx(p — 1) design
matrix D.

— Each column of D corresponds to a factor or interaction with entries that specify the
level settings. Each row specifies a design point with settings for the corresponding
simulation run.

> Abstract representation of a general linear model (multiple linear regression
model)

» Suitable model for DOE ranging from elementary main-effects models to
factorial designs with high-order interactions

12



e OLSR estimator of vector of unknown model coefficients

B=(X'X)'XY

e VVariance-covariance matrix of estimator
var(f) = o2(X X)*
* Fitted regression model
Y=Xg
@ Applicability: i.i.d. residual errors with N(0, ¢?)
— Else use Generalized Linear Models [Montgomery, 2012, p. 645)

“DOE should allow DOT&E to make statements of the confidence

levels we have in the results of the testing."™
[DOT&E, 24 November 2009]
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Custom/Optimal Design of Experimental
Computer Simulations for SBA Problem

“Building experimental designs unique to the situation at hand is

wonderful and profound in its importance.”
J. Stuart Hunter, JMP Discovery Summit, September 2012
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Custom/CDptlmal Desugn Usmg JMP

= GenerallApproach’

DOE - Custom Design

Custom Design

= All designs are model dependent ——

| AddFactor | Remove |AddN Factors | 1]

1. Define response and factors o e re— . .
2. Define model .“. Cotevorical  Easy L1 = 5 L
» Main factors, interactions, and power terms e e T e e
« Specify “Necessary” or “If Possible” M. %%
4. Specify # of runs P Necesss

 Based on # d.f. & desired CL T Group s o rendom blocks of sk 3]
« Time/cost/capability constraints R
5. Specify optimality criterion e

» D-optimal designs most appropriate for T
screening experiments

Model Specification
— Select Columns

PBS
Fin optional

M ake deS I g n E;Fx Weight || optional numeric l Help ] [ Run ]

- Freq [entional numeric Recall Keep dialog open
Check/Evaluate design T o

Run experiments Or SimUIationS — Construct Model Effects

— Pick Role Variables

Personality:| Standard Least Squares ‘

Ps

i

Emphasis: | Effect Screening ‘

© o 0 N O

Perform statistical analysis i
) ] . PES"Fin
Determine optimal solution

No Intercept
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Boat Attack Problem ReV|S|te .

Custom/OtlmaI Pesign-:

Design * Huynh et al. [2007]
Run PBS Fin C4ISR F/Fx Ps
1 L4 L3 L2 L1 0.39 :

o L1 L4 s 1 oo = Custom design construct
3 L1 L1 L1 L1 0.53 _ *- :
Y o 2 L3 L1 07e 4 factors™: PI_BS, Fln,_ C4ISR, an(_:l F/Fx
5 L4 L1 L2 L2 0.26 — 1 two-factor interaction: PBSxFin
6 L1 L2 L1 L2 0.61 o
7 L3 L3 L1 L2 0.69 — D-optimality
8 L2 L4 L2 L 0.82 _ _
9 L2 L4 L1 L2 0.81 — Constructed with JIMP Custom Designer
10 L1 L1 L3 L2 0.54
11 L1 L4 L1 L2 0.71 P :
> l2 L3 L2 L 061 = Efficient model-based design
13 L4 L4 L2 L1 0.68 _ T2l
i 3 s U1 Lo PP On_ly 2_4 runs f_or determining factors and
15 L2 L1 L4 L2 0.62 active interactions
16 L1 L3 L2 L1 0.59
17 L3 L4 L4 L1 0.77
18 L1 L3 L3 L2 0.58
19 L2 L1 L1 L1 0.63
20 L4 L2 L2 L2 0.63
21 L4 L2 L3 L1 0.64
22 L3 L4 L2 L2 0.76
23 L2 L2 L4 L2 0.77
24 L3 L1 L2 L2 0.7
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Diagnostics for Assessing Design

Alias Matrix
Effect
Intzrzept PBS*Fin1 PBS*Fin2 PBS*Fin3 PBS*Fin4 PBS*Fin5S PBS'Fingé PBS'Fin7 PBS'Fin® PB%*Fin9 PBS*CAISR1
PBS1 1] 0 0 0 0 L] o 1] ] -0
FB52 ] i 0 0 0 0 ] 0 ] 0.074
PBS3 1] 0 0 0 o L] o 1] ] 01
Fin1 1] 0 0 1} 0 L] o 1] ] -03
Fin2 ] i 0 0 0 0 ] 0 ] 0.048
Fin3 1] 0 0 0 0 0 D i] ] 0028
C4ISR1 1] 0 0 0 o L] o 1] ] -0.08
C4I3R2 1] 0 0 0 0 L] o 1] 1] 0.588
C4ISR3 ] i 0 0 0 0 ] 0 ] 014
FiFx [i] 0 0 0 0 L] 1} 1] ] 024
PBS'Fin 1 1] 0 0 0 o L] o 1] ] 012
PBS'Fin 2 1 0 0 0 0 L] o 1] ] 0.146
PBS'Fin 3 ] 1 0 0 0 0 ] 0 ] 001
PBS'Fin4 1] 0 1 0 o L] o 1] ] 01
PBS'Fin & 1] 0 0 1 0 L] o 1] ] 0.06
PBS'Fin & ] i 0 0 1 0 ] 0 ] 0083
PBS'Fin 7 1] 0 0 0 0 1 D i] ] 034
PBS"Fin 8 1] 0 0 0 o L] 1 1] ] -0.03
PRS'Fin & u] a a a o a o 1 o 0.05Q
Parameter WIF = = .
Intercept 1.727 Design Diagnostics
PES 1 2.211
PES 2 1112 D Optimal Design
£os s 15es D Efficiency 82 56108
Fin 2 1.475 .
Fin 3 1513 G Efficiency 63.24555
SHRZ  aesy  AEMCEn g
C4ISR 3 2333 AverageVariance of Prediction  1.333333
FiFx 1.5 i i i
PBo-Fin 1 1.207 Design CreationTime (seconds) 0
PES"Fin 2 1.099
PES"Fin 3 1.257
PES"Fin 4 1.349
PEBES"Fin 5 1.089
PES"Fin & 1.6897
PBS"Fin 7 1.362
PES"Fin & 1.357
PEBS"Fin 9 2.143

= Alias matrix

— No confounding of main effects and
active two-factor interactions

= Variance inflation factors (VIF)
— Relative to the orthogonal coding
— VIF < 5: no collinearity problem

= D-efficiency
— Orthogonal design: 100%
— 80%: nearly orthogonal

Evaluation of Design

» Very good design

— Desirable aliasing properties
— Nearly orthogonal
— Small number of runs
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JMP Fit Model Platform
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IyS|s of_ D_ata

Actual by Predicted Plot

0.9
Model Specification 0.5
— Select Columns — Pick Role Vvariables Fersonal\ty'| Standard Least Squares - o7
PBS L] Emphasis: | Effect Screening = 06
Fin optional o 2
C4ISR =L 0.5
oy =
Frex weight |[oononar numenc [ Hep l [ Run ] o i
Desirability Freq ootional numeric Recall | Keep dialog open s
By [optionar [ Remove | g';_ .
i T T T T T T
— Construct Model Effects 02 03 04 05 06 07 08 09
[_Aqd £es Ps Predicted P<.0001
cross  J|caisr RSq=1.00 RMSE=0.0083
[ Nest FiFx - = =
PBS*Fin Analysis of Variance
Macros = = n
Sum of
De 2
Ari:_.ls Source DF Squares Mean Square F Ratio
Transform Model 19 0.40161875 0.021138 305 1476
No Intercept Error 4 0.00027708 0 000062 Prob > F
C. Total 23 0.40189583 <. 0001
Fitted MEPTFEI Model Effect Tests
Sum of
Response Ps Source Nparm DF Squares F Ratio Prob = F
- PBS 3 3 0.13317112 6408234 < 0001*
Parameter Estimates Fin 3 3 0.15271885 734.8877 <.0001*
Term Estimate Std Error t Ratic Prob>|t] C4ISR 3 3 0.00001667 0.0802  0.9674
Intercept 0.6364B44 0002232 28512 <0001% bt . L T R e ER
PBS[L1] _0.025391 0.003544 -T.16 0.0020% PES*Fin 9 9 0.05657607 90.7486  0.0003
PBS[L2] 0.0667969 0.003139 21.28 <=.0001* 'Residual by Row Plot
PBS[L3] 0.1042969 O0.003766 27.69 <.0001* o ooB
Fin[L1] -0.105339 0.003252 -32.39 <.0001* = Gbead -
Fin[L2] 0.0675781 O0.003766 17.94 <.0001* = 5 - - i
Fin[L3] _0.067FB6  0D.00362 _18.73 <.0001* m 0.0007 - —
CAISR[L1] 0001667 0004495 -0.37 0.7296 o= -0.004H4 " | -
C4ISR[L2] 26e-17 0.004495 -0.00 1.0000 -0.008 T T T T
CAISR[L3] 4. 73e17  0.004495 -0.00 1.0000 0 3 10 13 20 23
F/Fx[L1] 0.001875 0.002081 0.90 0.4185 Row MNumber
PBS[L1]*Fin[L1] 0.0300781 0.005315 566 0.0048%
PBS[L1T*Fin[L2] -0.06513 0.006337 -10.28 0.0005*
PBS[L1*FIin[L3] 0.0416927 0.005818 717 0.0020*
PBS[LZ]*FIin[L1] 00270573 0 006001 451 00107 c o
PBS[LZ]*FIn[L2] -0.006693 0005629 -1.19 0.3002 A Iy f A Iv
PBS[L2]*Fin[L3] -0.02737 0006422 -426 0.0130% n a S I S O n a S I S
PBS[L3]*Fin[L1] 0.0664323 0.007102 9.35 0.0007
PBS[L3I*Fin[L2] -0.004818 0.006179 -0.78 0.4791 . . .
PESLaIFIlL3]  oozossss ocorest  27s comz - MEPTFI model has excellent predictive capability
Effect Tests
sum et — PBS, Fin, PBSFin statistically significant, | 0.05
Source MNparm DF Squares F Ratico Prob > F ] In! In S a IS ICa y Slgnl Ican ] I'e' p < .
PBS 3 3 013317112 640.8234 <.0001* . L. 2 .
Fin 3 3 015271885 734.8877 <.0001* _ R d I I t d N O OLSE I bl
F/Fx 1 1 0.00005625 0.8120 0D.4185
PBS*Fin 9 9 005657607 90 7486 00003~
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= JMP Prediction Profiler
- Determines factor settings that maximize P based on fitted MEPTFI model

Prediction Profiler

0.8: ey _ b |- |- | e
0.819375 ] : : : :
21079509, 067 ; ; ; ;
0.84366] (.4 5 : ; 5 /
> E
3 S | :
©0.819375 - :
(7] n N
[0] N .
[a] o .
o : .
T T T T T T T T T T T T T T T T T T T
- N MO < - N MO < - N M < ~— N O v v v
- R N [ | - [ | - 4 d d - - .| N O I\
L2 L4 L4 L1 e ©°
PBS Fin C4ISR F/Fx Desirability

= The “optimal effective” solution differs from the main effects plots of
Huynh et al. [2007]

< ODOE “optimal effective” SBA SoS architecture confirmed using several
Independent approaches
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é Classical optimal solutions are
point solutions

— Limited value, precisely wrong

— Does not take advantage of the full
information provided by the simulation
experiments

» Solution: CAIV and/or efficient
frontier (EF)

— EF and nearby solutions: small set of
viable alternatives for rational decision

— Sound decision based on informative
cost-effectiveness comparisons

— Supports set-based design (SBD)
[Singer et al., 2009]

Crystal Ball Report - OptQue st

Run preferences:

Deterministic optimizaton (without simulaton)
Crystal Ball data:

Objectives

Reguirements

Constaints

Linear

Decisionvariables

Forecasts

** Frozen items "

_..
B o= bk O =

OptQuest Resulis
Summary:
Afer 16 soluions were evaluated in 0 seconds,
the Mean of P5: was improved from D538 o 0818, a change of 52.18%

Performance Chart

0ar

L]
Rk o - + -
080+ £ . .

Ps

— ] L 8
— e Tl | o A
047 + B L ok
L]
(1<l o
L ]
0.20 2 L
0 3 -] e 12 15
lrerations
Jbjectives Best Soluton:
Maximize the Mean of PS5 0818 Cel C27
constrainis Left Side: Right Side:
1 PBS(L1)+PBS(LZ)+PBS(L3)+ PBS(L4)=1 1.00 1.00
2 Fin(1)+ Fin(2) + Fin(3) + Fin(4)=1 1.00 1.00
3 CAISR(1)+ CHSH(2)+ CHUSR(I)+ CHUSR4 =1 1.00 1.00
4 FFul1)+FFxi2F=1 1.00 1.00
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= DOE has undergone profound changes in the last 15 years

— Significant advances in computing capability and algorithms

— ODOE: flexible method to design experiments that custom fit circumstances
— Proven benefits of nearly orthogonal designs with more desirable aliasing

= MEPTFI model has excellent predictive capability for SoS architecting
— Realistic but simple model of interactions between system elements

= ODOE is well suited for SoS architecting

— D-optimal design excellent for evaluating main effects and interactions
 Efficient, reduced number of simulations
e Simple aliasing
» Design analysis provides valuable insight
o Statistical analysis generates metamodel; captures behavior of SoS
— Implemented in commercial statistical packages
e JMP Pro, Minitab Pro,...
» JMP Pro includes true optimization capability
o Metamodel useful for realistic AOA
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C@ﬁc‘ludmg Thoughts (2 of 2

= The application of orthogonal array experiments (OAE) to systems
engineering and architecting problems is a significant mistake

— Systems and SoS = active interactions = underlying OAE assumptions outside
domain of applicability = potential for highly misleading results

— Failure to correct significant mistakes in published works causes harm to both

discipline and stakeholders

REALIT® CaM LEADR TS DhisARTEA,
e WALL STeEET AMD on LiFie
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BAIDLY.

EMANUEL DERM.AN

BEHAVINCG.

Excerpt of The Modelers™ Hippocratic Oath

I will not give the people who use my models false comfort about their

accuracy.
I will mafe the assumptions and oversights explicit to all who use

them.
I understand that my work may have enormous effects on society and

the econony, many beyond my apprehension.

I I e LT
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