Aerospace Vehicle Systems Institute Rockwell Collins Virtual Integration for Model Based **AIRBUS** Safety Assessment of BOEING Complex Systems **←** EMBRAER System Architecture Virtual **Integration Program**

Honeywell

David Redman, AVSI Director

Presentation to the 16th Annual NDIA Systems Engineering Conference 29 October 2013

Outline

- Overview of SAVI
- The AADL Error-Model Annex
- Support of Safety Evaluation with AADL
- Case-Study
- Future Work

The Aerospace Vehicle Systems Institute

Liaison Members Full Members

- Airbus
- FAA
- Boeing
- NASA

DoD

- Aerospace
- **EADS**
- Valley
- **Embraer**
- **GE** Aviation
- Goodrich (now UTC)
- Honeywell
- **Rockwell Collins**
- Rolls Royce
- Saab
- **United Technologies**

ROLLS

aerospace

valley

Associate Members

- BAE Systems
 Bombardier
 Gulfstream
- Lockheed Martin

The Aerospace Vehicle Systems Institute

Full Members Liaison Members

- Airbus
- FAA
- Boeing
- NASA
- DoD
- Aerospace
- **EADS**

- Valley
- **Embraer**
- **GE** Aviation
- Goodrich (now UTC)
- Honeywell
- **Rockwell Collins**
- Rolls Royce
- Saab
- **United Technologies**

Associate Members

- BAE Systems Bombardier Gulfstream Lockheed Martin

Mission

AVSI addresses issues that impact the aerospace community through international cooperative research and collaboration conducted by industry, government and academia.

The AVSI SAVI Program

- Launched in 2008 to address the problem of growth in complexity of systems leading to cost and schedule overruns
- The objective is to develop a standards-based Virtual Integration Process (VIP) that allows multiple parties to virtually integrate and analyze systems throughout development life cycle
 - The result is earlier detection and correction of errors leading to cost savings
- Highly focused on integration defining the state of the art in system integration consistency checking

SAVI Engages Stakeholders

- The SAVI Program has continually sought any and all stakeholders to contribute to the definitions of the standards-based solution
- SAVI has also sought out partners with best-inclass technology that supports the VIP to avoid duplication of effort
- Current and past participants include:
 - Adventium Labs
- Airbus

- BAE Systems
- Boeing

US DoD

Embraer

Esterel

Eurostep

US FAA

- GE Aviation
- Honeywell
- Lockheed Martin

NASA

- Rockwell Collins
- SEI at CMU
- Texas A&M

Past Results

- Several proof of concept phases have researched the feasibility of the SAVI VIP, exploring topics including:
 - Model-based vs.
 document based systems acquisition
 - SAVI return on investment (RoI)
 - Architectural description language capabilities and extensions
 - Inter-domain tool integration
 - Model repository

- attributes for virtual integration
- Model data exchange protocols and technologies
- IP protection in an integrated, multiparticipant modeling environment
- Assurance methods

Past Results

- Several proof of concept phases have researched the feasibility of the SAVI VIP, exploring topics including:
 - Model-based vs.
 document based systems
- integration
- Model data exchange

SAVI Members have concluded that there is compelling evidence to justify development of the SAVI VIP

- integration
- Model repository attributes for virtual

CHVIIOHIHEHI

Assurance methods

Current Project Focus

Safety Demo Focus

- Application on a standardized example (AIR6110)
 - Automated generation of certification documents
 - Compliance with standards requirements
- Highlight the iterative design process
 - First safety evaluation
 - Refinement through system development
- Use of commercial and open-source tools
 - Reproducible at no-cost
 - Adaptation with state-of-the-art analysis tools

THE AADL AND THE ERROR MODEL ANNEX

The Architectural Analysis and Design Language (AADL)

- An SAE standard (AS5506B) maintained by the SAE Aerospace AS-2C Committee
- Semantically precise language suitable for quantitative analyses
- Originally developed for analysis of embedded systems, but language is extensible – standard consists of a core language definition and annexes
- Application of AADL is growing both in the the US and internationally
- Supported by open-source and commercially available tools
- More information at http://www.aadl.info

Overview of Error-Model Annex

- Extension of AADL for fault description: error events, propagations, etc.
- Integration with current models by extending existing components
- Draft document to be proposed as a standard annex
- Support for Safety Evaluation and Analysis

Error Types and Propagations

- Error types: error classification
- Extensions and renaming
- OutOfRange Inconsistent
- Error propagations across components
 - Associate errors with system connections
 - Define error sources, sinks and containment

Error behavior

- States machines
 - Error-related transitions
 - Propagation rules
 - Use of error types

- Composite behavior
 - Define system states according to its parts
 - ex: "I am failing if one of my component is failing"

Specific Error-Model Properties

- Severity, likelihood, error description
- Support for generating validation documentation
- Tailoring for safety standards (ARP4761, MIL-STD-882)

SUPPORT OF SAFETY EVALUATION WITH AADL

AADL & Safety Evaluation - Tool Overview

Architecture centricity enables generative technologies to support analyses

FHA

- Spreadsheet
- Use error propagations

FTA

- CAFTA OpenFTA
- Use composite behavior
- Error flows

Markov Chain

- PRISM
- Use error flow
- Error behavior

SPN/SANs

- StochasticPetri Nets andActivity Nets
- Use error flow
- Error behavior

FMEA

- Spreadsheet
- Error behavior
- Propagations

"traditional" methodologies (a la ARP 4754/4761)

Safety Analysis & AADL

- Preliminary System Safety Assessment (PSSA) support
 - High-level component, interfaces from the OEM
 - Automatic generation of validation materials (FHA, FTA)
- System Safety Assessment (SSA) support
 - Use refined models from suppliers
 - Enhancement of error specifications
 - Support of quantitative safety analysis (FTA, FMEA, MA)

Evolution of Safety Analysis process with AADL

Functional Hazard Analysis Support

- Use of component error behavior
 - Error propagations rules
 - Internal error events
- Specify initial failure mode

Define error description and related information

- Create spreadsheet containing FHA elements
 - To be reused by commercial or open-source tools

Fault-Tree Analysis Support

- Use of composite error behavior
 - FTA nodes
- Use of component error behavior
 - Incoming error events

- Walk through the components hierarchy
 - Generate the complete fault-tree
 - Focus on specific AADL subcomponents
- Export to several tools
 - Commercial: CAFTA
 - Open-Source: OpenFTA http://www.openfta.com

₩AADL

Markov Chain

Markov-Chain Support

- Use of component error behavior
 - Error propagations rules
 - Error transitions
- Map states and error types into specific values
 - Tool-specific approach
- Ability to evaluate system state over time

What is the probability my system is failing within 30

days?

- PRISM http://www.prismmodelchecker.org/

Failure Mode and Effects Support

- Use of component error behavior
 - Error propagations rules (source, sink, etc.)
 - Internal error events
- Traverse all error paths
 - Record impact over the components hierarchy
- Use error description and related information
- Create spreadsheet containing FHA elements
 - To be reused by commercial or open-source tools

CASE STUDY

Safety Analysis Overview and Demo Sequence

- Demonstrate a select set of PSSA analyses in the context of the Wheel Braking System (WBS) example
- Potential scenarios
 - Baseline design (pre-RFP)
 - Competing Architectures (RFP responses)
 - Architecture refinement (iteration on RFP selection)
 - Safety property specification refinement
- Preconditions
 - Aircraft and higher-level safety artifacts provided to PSSA following progression of AIR 6110 (be specific)
 - WBS model(s) and supporting environment models configured with ARP property sets
 - Consistency check scenarios confirm model consistency
 - Reminder: "Per ARP 4761 the PSSA is the method for determining how failures can lead to the functional hazards identified by the FHA, and how the FHA requirements can be met."

Wheel Brake System

- Development of a public model to complement the models developed in the SAVI Program
 - https://wiki.sei.cmu.edu/aadl/index.php/ARP4761 Wheel Brake System %28WBS%29 Example
- Use of Error-Model and ARINC annexes
 - Relevance for the avionics community
- Apply the technology/toolset on a known example
 - Generation of FHA, FTA, MA & FMEA

AADL model, BSCU variations

FHA of the Parent System

FTA of the Parent System

FTA of the BSCU subcomponent

FMEA of the Parent System

Component	Initial Failure Mode	1st Level Effect	Failure Mode	second Level Effect
pedals	{NoService}	pedals.signal1:{NoService}	pedals{NoService}->sub1/cmd	sub1/cmd: {NoService} Masked
pedals	{NoService}	pedals.signal2:{NoService}	pedals{NoService}->sub2/cmd	sub2/cmd: {NoService} Masked
pedals	internal event InternalFault	pedals.signal2:{NoService}	pedals{NoService}->sub2/cmd	sub2/cmd: {NoService} Masked
pedals	internal event InternalFault	pedals.signal1:{NoService}	pedals{NoService}->sub1/cmd	sub1/cmd: {NoService} Masked
power/battery1	{NoPower}	power/battery1.socket:{NoPower}	power/battery1{NoPower}->bscu/sub1	bscu/sub1: {NoPower} Masked
power/battery1	internal event Depleted	power/battery1.socket:{NoPower}	power/battery1{NoPower}->bscu/sub1	bscu/sub1: {NoPower} Masked
power/battery1	internal event Explode	power/battery1.socket:{NoPower}	power/battery1{NoPower}->bscu/sub1	bscu/sub1: {NoPower} Masked
power/battery2	{NoPower}	power/battery2.socket:{NoPower}	power/battery2{NoPower}->bscu/sub2	bscu/sub2: {NoPower} Masked
power/battery2	internal event Depleted	power/battery2.socket:{NoPower}	power/battery2{NoPower}->bscu/sub2	bscu/sub2: {NoPower} Masked
power/battery2	internal event Explode	power/battery2.socket:{NoPower}	power/battery2{NoPower}->bscu/sub2	bscu/sub2: {NoPower} Masked

FUTURE WORK

Safety Analysis Consistency Checks

- Consistency at integration time
 - Consistency between models from different suppliers
 - Strengthen the Virtual Integration promoted by SAVI
- Consistency of the internal model
 - ex: Can I propagate this error according to my actual state ?
- Consistency across error models specifications
 - Component Error Behavior with Composite Error Behavior
 - Correctness of a state according to subcomponents
- Error information with Behavior information

SAVI Consistency Checks

Current Project Focus

Questions?

Contacts:

Dr. Don Ward

Phone: (254) 842-5021

Mobile: (903) 818-3381

dward@avsi.aero

Dr. Dave Redman

Office: (979) 862-2316

Mobile: (979) 218-2272

dredman@avsi.aero

Dr. Julien Delange

Office: (412) 268-9652

jdelange@sei.cmu.edu

