

# Architecture-Based Analysis of System ility Synergies and Conflicts

Barry Boehm, Jo Ann Lane, USC Kevin Sullivan, U. Virginia

NDIA Systems Engineering Conference October 30, 2013

10-30-2013

1



# **Outline**

- Critical nature of the ilities
  - Major source of project overruns, failures
  - Significant source of stakeholder value conflicts
  - Poorly defined, understood
  - Underemphasized in project management
- Challenges for cyber-physical-human systems
- SERC Foundations efforts
  - AFIT, GaTech, MIT, NPS, PennState, USC, Uva, WSU
  - Stakeholder value-based, means-ends hierarchy
  - Formal analysis of ility definitions and relations
  - Architecture strategy synergies and conflicts

10-30-2013

2

# System ilities have systemwide impact System elements generally just have local impact ilities often exhibit asymptotic behavior Watch out for the knee of the curve Best architecture is a discontinuous function of ility level "Build it quickly, tune or fix it later" highly risky Large system example below Required Architecture: Modified Cilent-Server After Prototyping Original Spec After Prototyping

Response Time (sec)





# **Example of Current Practice**

- "The system shall have a Mean Time Between Failures of 10,000 hours"
- What is a "failure?"
  - 10,000 hours on liveness
  - But several dropped or garbled messages per hour?
- What is the operational context?
  - Base operations? Field operations? Conflict operations?
- Most management practices focused on functions
  - Requirements, design reviews; traceability matrices; work breakdown structures; data item descriptions; earned value management
- What are the effects on other –ilities?
  - Cost, schedule, performance, maintainability?

10-30-2013

5





# Outline

- Critical nature of the ilities
  - Major source of project overruns, failures
  - Significant source of stakeholder value conflicts
  - Poorly defined, understood
  - Underemphasized in project management
- Challenges for cyber-physical-human systems
- SERC Foundations efforts
  - AFIT, GaTech, MIT, NPS, PennState, USC, Uva, WSU
  - Stakeholder value-based, means-ends hierarchy
  - Formal analysis of ility definitions and relations
  - Architecture strategy synergies and conflicts

10-30-2013

7



# Importance of Cyber-Physical Systems Major gap in tradespace analysis capabilities

- Current ERS, DARPA tradespace research focused on physical system tradeoffs
  - Range, payload, size, weight, lethality, power and fuel consumption, communications bandwidth, etc.
  - Some focus on physical modularity, composability
- Current cyber tradespace research focused on software, computing, human factors tradeoffs
  - security, safety, interoperability, usability, flexibility, adaptability, dependability, response time, throughput, etc.
- Gaps in capabilities for co-design of hardware, software, and human factors; integration of tradespace analyses



### SYSTEMS ENGINEERING Research Center

## **Prioritized JCIDS ilities**

User View by Combatant Commands: Top priority first

- Intelligence, Surveillance, and Reconnaissance
  - Comprehensive Persistent Survivable Integrated Timely Credible Adaptable Innovative
- Command and Control (note emphasis on Usability aspects)
  - Interoperability Understanding Timeliness Accessibility Simplicity
     Completeness Agility Accuracy Relevance Robustness Operational Trust
- Logistics: Supply
  - Responsiveness Sustainability Flexibility Survivability Attainability Economy Simplicity
- Logistics: Maintenance
  - Sustainability Responsiveness Attainability Flexibility Economy Survivability Simplicity
- Net-Centric: Information Transport
  - Accessible Capacity Accurate Timely Throughput Expeditionary Latency



# **Outline**

- Critical nature of the ilities
  - Major source of project overruns, failures
  - Significant source of stakeholder value conflicts
  - Poorly defined, understood
  - Underemphasized in project management
- Challenges for cyber-physical-human systems
- SERC Foundations efforts
  - AFIT, GaTech, MIT, NPS, PennState, USC, Uva, WSU
  - Stakeholder value-based, means-ends hierarchy
  - Formal analysis of ility definitions and relations
  - Architecture strategy synergies and conflicts

10-30-2013



# **SERC Value-Based ilities Hierarchy**

Based on ISO/IEC 9126, 25030; JCIDS; previous SERC research

- Individual ilities
  - Mission Effectiveness: Speed, Physical Capability, Cyber Capability, Usability, Accuracy, Impact, Endurability, Maneuverability, Scalability, Versatility
  - Resource Utilization: Cost, Duration, Personnel, Scarce Quantities (capacity, weight, energy, ...); Manufacturability, Sustainability
  - Protection: Security, Safety
  - Robustness: Reliability, Availablilty, Maintainability, Survivability
  - Flexibility: Modifiability, Tailorability, Adaptability
  - Composability: Interoperability, Openness, Service-Orientation
- Composite ilities
  - Comprehensiveness/Suitability: all of the above
  - Dependability: Mission Effectiveness, Protection, Robustness
  - Resilience: Protection, Robustness, Flexibility
  - Affordability: Mission Effectiveness, Resource Utilization







