
Scalable Data and Software
Architectures –Architectures
Getting Past the Hype

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

J h Kl iJohn Klein
Ian Gorton

30 Oct 2013

© 2013 Carnegie Mellon University

Copyright 2013 Carnegie Mellon University

Thi t i l i b d k f d d d t d b th D t t f D f d C t tThis material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT TRADEMARK OR COPYRIGHT INFRINGEMENTRESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission Permission is required for any other useelectronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM-0000711

2
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

Outline

State of the practice
Scale – Dimensions, qualities, approaches
Horizontal Scaling – Definitions, implications
NoSQL – A technology, not a solution
LEAP4BD – A system-specific risk reduction approachLEAP4BD A system specific risk reduction approach

3
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

Scalability – State of the practice
“The problem is not solved”The problem is not solved
Building scalable systems is hard
• Healthcare.gov
• Netflix – Christmas Eve 2012 outage
• Amazon – 19 Aug 2013 – 45 minutes of downtime = $5M lost revenue
• Google – 16 Aug 2013 - homepage offline for 5 minutes
• NASDAQ – June 2012 – Facebook IPO

Building scalable systems is expensive
• Google, Amazon, Facebook, et al.g

– More than a decade of investment
– Billions of $$$

• Many application-specific solutions that exploit problem-specific propertiesy pp p p p p p p
– No such thing as a general-purpose scalable system

• Cloud computing lowers cost barrier to entry – now possible to fail cheaper
and faster

4
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

Scale – Dimensions

Workload
• # of concurrent sessions and operations
• Operation mix (create, read, update, delete)
• Read – query mix
• Generally, each system use case represents a distinct workload

Data Sets – Volume, Velocity, Variety
• Number of records
• Record size
• Record structure (e.g., sparse records)
• Homogeneity/heterogeneity of structure/schema

Elasticityy
• Runtime peaks and valleys – how frequently, how quickly, how much

5
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

Characterizing Scalability

Who doesn’t want a scalable system? But what does that mean?

Scalability = Dependability at Scale
• Criteria is often “cost increases linearly as <X> increases”

Scalability is a composite quality that includes
• Throughput
• Latency
• Availability

Consistency• Consistency
• Security
• and more

Need to define this for each systemNeed to define this for each system
• The challenge is that the qualities are not independent – requirements must

account for tradeoffs as system scales
• Quality Attribute Scenarios are one useful tool

6
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

“Vertical” Scaling

Scale up – “big iron”
• Monolithic compute resource
• Shared disk
• More load = bigger processor and

disk
Partitioned databases on disk
• Optimizes the data placement on

separate files or disks
M lithi t• Monolithic compute resource

Separate database instances
• Partition database across database

i i tengine instance
• Functional partitioning common

(e.g., customers, orders, stock)
• More compute more license costs

7
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

• More compute, more license costs

“Horizontal” Scaling

Spread data and workload across
large large clusters of commodity-
l h dclass hardware

For example, data sharding
• Horizontal data partitioning
• Many possible partitioning schemes,

e.g. value based (region, customer
ID) or a arbitrary (hashing)

Issues:Issues:
• Evenly distributing read load, write

load, and data volume
• Handling shard failures• Handling shard failures

8
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

Horizontal Scaling Distributes Data

Distributed systems theory is hard but well-established
• Lamport’s “Time, clocks and ordering of events” (1978), “Byzantine generals”

(1982), and “Part-time parliament” (1990)
• Gray’s “Notes on database operating systems” (1978)
• Lynch’s “Distributed algorithms” (1996, 906 pages)

Implementing the theory is hard, but possible
• Google’s “Paxos made live” (2007)

Introduces fundamental tradeoff among “CAP” qualities
• Consistency, Availability, Partition tolerance (see Brewer)
• “When Partition occurs, tradeoff Availability against Consistency, Else , y g y,

tradeoff Latency against Consistency” (PACELC, see Abadi)

9
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

CAP Tradeoffs in Modern Data-Intensive
SystemsSystems
“Traditional” vertically-scaled relational database system provides
• ACID operations – atomic, consistent, isolated, durable
• “Single system image” programming model

– application designer does not know how data is distributed
– strong consistency model
– operations either succeed or fail

Horizontally-scaled systems usually relax consistency to improve
availability and performance
• BASE – BAsically available, Soft state, Eventually consistent
• ACID 2.0 – operations are Associative, Commutative, and Idempotent
• Application logic must understand failure modes and handle data

inconsistency

10
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

Primer on data consistency models

Strong – After an update completes, all reads return the updated value
Weak – After an update completes, there is no guarantee a read will
return the updated value. The period between the update and when any
read will return the updated value is called the inconsistency window.
• Eventual – If no new updates are made, eventually every reader will see the

l t d t d l Th DNS (D i N S t) i t lllast updated value. The DNS (Domain Name System) is eventually
consistent.
– Causal – If A communicates to B that it has updated an item, then

subsequent reads by B return the updated value, and new updates by Asubsequent reads by B return the updated value, and new updates by A
overwrite old values.

– Read-your-writes – If A updates an item, then reads by A return the
updated value.

– Monotonic read – If a reader has seen an update, then subsequent reads
will never return older values.

– Monotonic writes – Updates by a process are applied in the order sent.
See Vogels “E ent all Consistent” http //q e e acm org/detail cfm?id=1466448

11
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

See Vogels, “Eventually Consistent”, http://queue.acm.org/detail.cfm?id=1466448.

NoSQL – Horizontally-scalable database
technologytechnology
NoSQL - Originally implied “No
SQL”, but stance has moderated

tiover time
Designed to scale horizontally and
provide high performance for a
particular type of problemparticular type of problem
• Most originated to solve a particular

system problem/use case
• Later were generalized (somewhat)• Later were generalized (somewhat)

and most are available as open-
source packages

12
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

NoSQL Databases – Common Characteristics

No relational schema
• De-normalized data models (application manages redundancy)
• No join queries (use an aggregation framework like MapReduce instead)
• Dynamic schema – no enforcement by database, all enforcement in

application
Simple physical data models – less mismatch between programming
language constructs and database constructs
Built-in, automatic distribution
• sharding (partitioning across nodes)
• replication (copying across nodes)

Application controls durability and consistency at the operation level
• Coordinate write and read settings to achieve desired quality

13
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

NoSQL Landscape

14
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

https://blogs.the451group.com/information_management/files/2013/02/db_Map_2_13.jpg

NoSQL Landscape – Simplified to Four Types

Key-value Store
• Simple hash table – associates unique key with a piece of un-typed data
• Some implementations add metadata to facilitate queries and versioning to resolve conflictsSome implementations add metadata to facilitate queries and versioning to resolve conflicts
• Examples – Dynamo, riak, Redis, Oracle NoSQL

Column Store
• Inverted key-value store – indexed and stored by values, keys not unique
• Inbox search use case key is message ID value is keyword “Find all messages that• Inbox search use case - key is message ID, value is keyword - Find all messages that

contain ‘System Engineering’”
• Examples – Cassandra, Accumulo, HBase, Amazon SimpleDB

Document Store
Key value store where “value” is a document (XML JSON BSON)• Key-value store where value is a document (XML, JSON, BSON, …)

• Often includes full-text indexing to query within a document
• Examples – MongoDB, Couchbase

Graph Store
• Records represent nodes and edges/links – properties attached to each store the data
• Links are traversable, concepts like “next-to” or “friend-of-friend” are built-in
• Example – Neo4J

15
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

Polyglot Persistence

Evolution from Relational Databases to NoSQL Databases
Relational Paradigm – “One size fits all”
• Normalize your data model and wedge it into a relational schema
• Tune the database for your problem
• Simpler applications using single system image abstractionp pp g g y g
• Usually good enough and easier than any alternative

NoSQL Paradigm – “Mix and match”
• Break up your persistence requirements and choose the best database forBreak up your persistence requirements and choose the best database for

each part of your problem
• Several different databases technologies in the system – polyglot persistence
• Usually better performance
• Simpler applications for simple problems (compared to using relational store)
• More complex applications for other problems (need to re-create some of the

SQL capabilities in the application)

16
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

Why does it matter?

A (sweeping) software engineering practical perspective
• Software and data architect are two different roles, each with separate

concerns
• Roles separated by the single system image abstraction

– Software architects live above
– Data architects live below

• Driven by different, deep technology specializations

NoSQL leads us to architecture approaches that blur this separation
• Simpler data models - less specialization required
• Implemented as highly distributed systems, with a significant part of the

architecture defined by the data management systems is use

NoSQL is just one component of scalable data-intensive system solution

17
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

NoSQL Technology and Architecture Selection

Systematic approach is needed to evaluate technology and architecture
alternatives
E al ation conte tEvaluation context:
• Rapidly changing technology landscape – balance speed with precision
• Large potential solution space – need to quickly narrow down
• Scale makes full fidelity prototyping impractical• Scale makes full-fidelity prototyping impractical
• Technology is highly configurable – need to focus on go/no-go criteria and

avoid trap of optimizing every test run
SEI has developed a risk reduction approach called Lightweight p pp g g
Evaluation and Architecture Prototyping for Big Data (LEAP4BD)
• Assess the system context and landscape
• Identify the architecturally-significant requirements and develop decision

criteriacriteria
• Evaluate candidate technologies against quality attribute decision criteria
• Validate architecture decisions and technology selections through focused

prototyping

18
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

LEAP4BD Outcomes

Focus on the data storage and access services addresses the major risk
areas for an application
• Keeps the method lean rapidly produces design insights that become the basis• Keeps the method lean, rapidly produces design insights that become the basis

for downstream decisions
Highly transparent and systematic analysis and evaluation method
significantly reduces the burden of justification for the necessary
investments to build deploy and operate the applicationinvestments to build, deploy, and operate the application
• Data-driven decisions

Informed adoption of modern technologies to reduce costs while ensuring
that an application can satisfy its quality attribute requirementspp y q y q
Increased confidence in architecture design and database technology
selection
• Hands-on experience working with the technology during prototype development,

reduces development risksreduces development risks
Identifies risks that must be mitigated in design and implementation, along
with detailed strategies and measures that allow for continual assessment

19
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

LEAP4BD Status

Currently piloting with a federal agency
• Project involves both scalable architecture design and focused NoSQL

database technology benchmarking, as well as an assessment of features to
meet the key quality attributes for scalable big data systems

We are interested in working with organizational leaders who want to
ensure appropriate technology selection and software architectureensure appropriate technology selection and software architecture
design for their big data systems
See http://blog.sei.cmu.edu/post.cfm/challenges-big-data-294 for more
detailsdetails

20
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

Wrap-up

Building scalable data-intensive systems is NOT a solved problem.
Avoid the buzzword “scalable” – be specific about
• Dimension – workload, data volume/velocity/variety, and elasticity
• Qualities and tradeoffs – throughput, latency, availability, consistency,

security, etc.
Architectures that use horizontal scaling are the current best solution forArchitectures that use horizontal scaling are the current best solution for
many scalable systems
• Partition computing and storage across large numbers of commodity-class

hardware nodes
• These are distributed systems, with all of the accompanying benefits and

challenges
NoSQL databases are designed for horizontal scaling
• Simpler database (compared to relational) with built in data distribution• Simpler database (compared to relational) with built-in data distribution

LEAP4BD is a systematic approach to evaluate technology and
architecture approaches

21
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

Contact Information

John Klein
Senior Member of the Technical Staff

U.S. mail:
Software Engineering Institute

Software Systems Division
Telephone: +1 412-268-4553
Email: jklein@sei.cmu.edu

Customer Relations
4500 Fifth Avenue
Pittsburgh PA 15213-2612Email: jklein@sei.cmu.edu Pittsburgh, PA 15213 2612
USA

World Wide Web:
www.sei.cmu.edu
www.sei.cmu.edu/contact.html

Customer Relations
Email: customer-
relations@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

22
Getting Past the Hype
John Klein
© 2013 Carnegie Mellon University

S 68 6 5

