

Electromagnetic Railgun

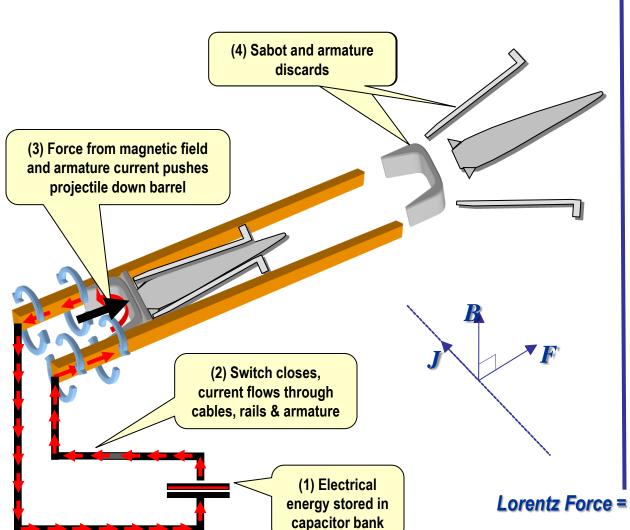
NDIA Joint Armaments

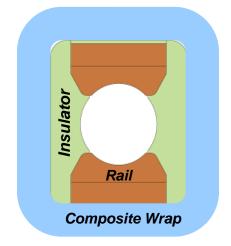
Forum, Exhibition & Technology Demonstration

13 May 2014

RDML Bryant Fuller,

Navy Chief Engineer, NAVSEA 05

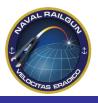

How Railgun Works

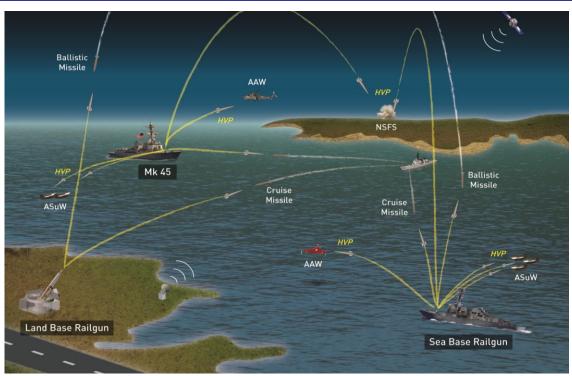

Slide 2

Cross-Section

Lorentz Force = Current (J) X Magnetic Field (B)

Lorentz Force =1/2 Inductance Gradient (L') * Current (I)^2


32MJ World Record Event EMLF Dahlgren, VA – Dec 2010


Distribution A: Approved for Public Release Distribution is Unlimited

Railgun Operational Impact

- Wide Area Coverage
 - Increased speed to target
 - 100+ NM
- Accelerates operational tempo
 - Faster attrition of enemy personnel and equipment
 - Operation timeline shifts left
- Reduces Cost per Kill
 - Lower Unit Cost
 - Lower handling Cost
- Enhances Safety
 - Reduced collateral damage
 - Simplified storage, transportation and replenishment
 - No unexploded ordnance on battlefield
- Reduces Logistics
 - Eliminates gun powder trail
 - Deep magazines

- Multi-Mission Capability
 - Naval Surface Fire Support
 - Surface Warfare
 - Missile Defense
 - Long Range Fires

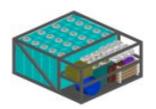
Multi-Mission Capable for Offense and Defense

Tactical Flight Body Launch Shot Number 515 in 2009

Downrange Flight Shot Number 515 in 2009

Naval Railgun – Key Elements

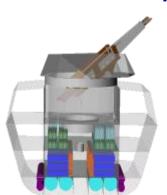
Launcher


- Multi-shot barrel life
- Barrel construction to contain rail repulsive forces
- Scaling from 8MJ (state of the art) to 32MJ
- Thermal management techniques
- M&S Represent interaction between bore and projectile

Projectile

- Dispensing and Unitary Rounds
- Gun launch survivability
 - •20 to 30kG acceleration
 - Aero Thermal Risk Management
- Hypersonic guided flight for accuracy
- Kinetic Energy Lethality mechanics

Power & Energy


Pulsed Power Capacitors

Batteries

- Energy Density
- Rep rate operation & thermal management
- Switching

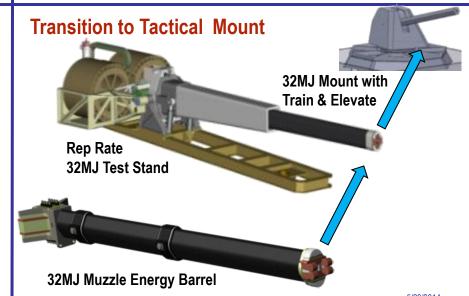
Ship Integration

- Dynamic Power Sharing
- Space and Weight
- Cooling
- EM Field Management

Multi-Mission Railgun

32 Mega Joule Laboratory Launcher

Railgun Development Focus


- Technology Proven at 32MJ Muzzle Energy
 - Focus shifting to rep rate operations
 - Tactical Barrel & Mount Compatibility
- Rep Rate 32MJ Launcher & Test Stand
 - Establish Manufacturing with BAE Systems
 - Validate Bore Life during Rep Rate Ops
- Rep Rate 32MJ Gun Mount (100NM capable)
 - Leverage Navy Gun Mount Experience
 - Integrate HVP Handling & Initialization
 - Design for Pulsed Power Transfer & Cabling

Warfighting Payoff

- Responsive, Wide Area Coverage
- Precision fires via guided munitions
- Deep magazines cost effective
- Enhanced safety with Low Collateral Damage
- Multi-mission, Multi-Barrel Hyper Velocity Projectile (HVP)

HVP & Gun Systems equates to Distance

- 20 MJ Railgun → 50 nautical miles
- 32 MJ Railgun → 110 nautical miles

Multi-Mission HVP

Hyper Velocity Projectile

- High speed launch enables effectiveness
- High density electronics enables packaging & survivability
- •High computational power enables advanced tracking & guidance algorithms

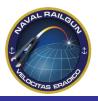
Commonality Approach

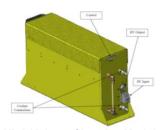
GUN SYSTEM	PROJECTILE (SABOTED & SUB-CALIBER)	MISSION & WARHEAD TYPE	TRANSITION OPPORTUNITES	GAME CHANGING CAPABILITY
5" MK 45 MOD 2/4		NSFS – HE	113 Barrels (PEO IWS)	GUIDED 26 – 41 NM NSFS/ASCM/ASuW
20 – 32 MJ Railgun		NSFS – HE NSFS - KE	FUTURE (PMS405/PEO IWS)	GUIDED 50 - 100 NM NSFS/ASCM/ASuW/ Future Threats
155 mm – AGS		NSFS – HE	6 Barrels (PEO IWS)	GUIDED 40 NM NSFS/ASCM/ASuW
155 mm		Ground Fires – HE	800 ARMY 300 MARINE ASSETS	GUIDED 17 NM Fires/CMD

Multi- Barrel, Multi- Mission, & Multi-Service Applications

Kinetic Energy Inert Missile Impact – End View

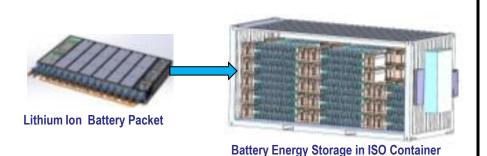
Power & Energy




Pulsed Power at the Electromagnetic Launch Facility, Dahlgren, VA

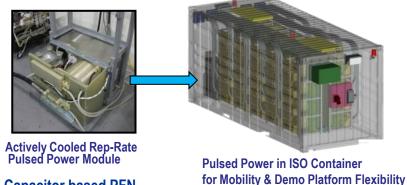
Advanced Energy Systems

High Density Power Electronics

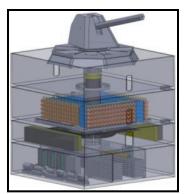


High Voltage Charging Module

- Charging Power Supplies for Advanced Energy Systems
- Converting Ship's Power to High Voltage for Electric Weapons
- Supports Electric Drive, Railguns, Lasers & Radars


Battery Energy Storage

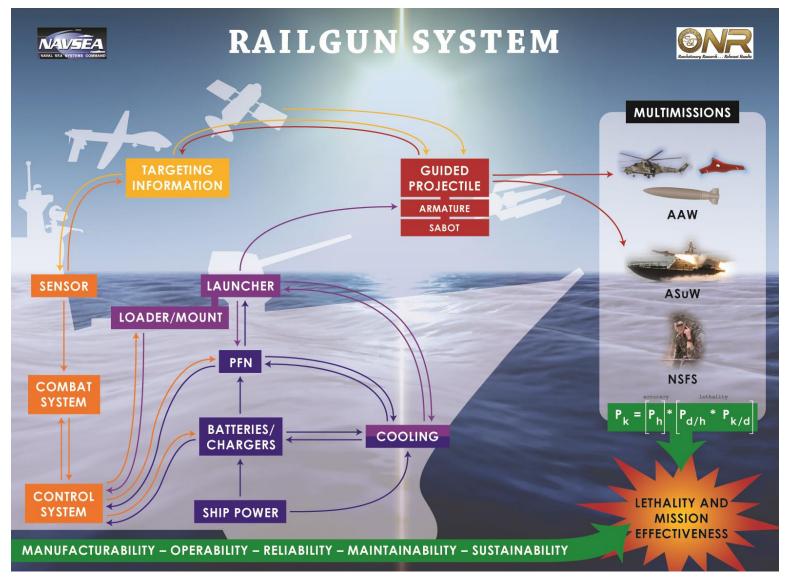
for Mobility & Demo Platform Flexibility


- Energy Storage to buffer Prime Generators
- Ready Reserve Energy for response to "quick" threats
- Requires close Ship Safety Design, Test & Monitoring

Pulsed Forming Network

- Capacitor based PFN
- Higher Energy Density lowers shipboard volume/footprint
- Rep rate operation & thermal management


System / Ship Integration



- Dynamic power sharing across platform
- Designing with Space and Weight Constraints
- Assessing Thermal and EM Field management

Railgun System Integration

Joint High Speed Vessel

Path Forward

- Naval EM Railgun is a Game Changer
- Opportunities
 - Barrel Life Development
 - Critical Projectile Components
 - Compact Power & Energy Power Conversion
 - High Energy Density Pulsed Power
 - Understanding Ship and Weapons System Integration Requirements
 - Execution of Demos to validate Simulation/Designs

Transition to Land & Sea Demonstrations

Point of Contact

For follow-up questions or additional information, contact:

CAPT Michael Ziv,

PMS405 Program Manager, NAVSEA 05T/DCTO;

Naval Sea Systems Command

Directed Energy/Electric Weapons (PMS405)

875 N. Randolph Street

Arlington, VA 22203

Phone: 703.696.5752

Cell: 202.306.0976

Michael.Ziv@navy.mil