

<u>Beyond TSPI</u>: Using Data Fusion to Combine Multiple Sources of Live Fire Test Data to Determine Aerodynamics and Characterize Control Events

> Alan F. Hathaway Arrow Tech Associates, Inc. South Burlington, VT 05403 802-865-3460 x12 alan@prodas.com

NDIA Joint Armaments Forum & Exhibition, May 14, 2014

Problem:

- TSPI: Time, Space, Position, Information – Will Always Be Important in Live Fire Testing
- However, We Need to Look Beyond TSPI -> Data Fusion
 - How To Make Best Use of all Available Live Fire Test Data?
 - Multiple Instrumentation Sources
 Ground-Based Instrumentation
 - Doppler Radar
 - Position Radar
 - KTM Optical Cameras
 - Etc.

- **On-Board Instrumentation**
 - GPS
 - Accelerometers
 - Sun Sensors
 - Etc.
- Instrumentation May Only Cover Portion of the Flight
 - Instrumentation Signal "Drop-Out"

Solution: Data Fusion of All Sources Combined With Parameter Identification

- <u>Assume</u>: System Model has unknown parameters influencing flight (Ballistic Flight or Guided Flight)
- **<u>Objective</u>**: Determine magnitude of unknown parameters to obtain simultaneous <u>best fit all of the test data</u>
 - Obtain flight simulation that matches observed flight path and dynamic motion with minimum errors
 - Compare predicted flight motion using standard equations of motion with measured motion, differentially adjust aerodynamics to minimize differences

Parameter Identification Provides Accurate Assessment from Largest Portions of Test Data

- 1. Process starts with the standard equations of motion and estimated initial conditions & aerodynamics
- 2. Develops partial differential equations for each test measurement and coefficient for a set of parametric equations
- 3. Performs numerical integration to obtain partial derivatives for each test measurement and coefficient
- 4. Differential correction equation from Taylor Expansion
- 5. Solves for aerodynamics & examines residuals, updates equations of motion & iterates until change in residuals is "zero"
 - Using a sensitivity matrix, the most sensitive parameters "fit" first.

Parameter Identification Uses All Available Measurements

- Preliminary Analysis
 - Data Screening (e.g. does data have large noise?)
 - Estimates of Initial Velocity & Conditions (Gun QE & Azimuth of Fire)
 - Estimates of Burn-On & Burn-Off times (if needed)
 - Overlapping Sectional Fits of Complete Trajectory via Equations of Motion
 - Axial Force & Spin vs. Time & Mach and/or Thrust vs. Time
- Parameter Identification
 - Complete Parameter Identification
 - Four Degree of Freedom (for ballistic flights)
 - Six Degree of Freedom (w/Control Forces; w/ On-board sensors only)

Data Fusion Analysis Procedure of all Measurements

Examples

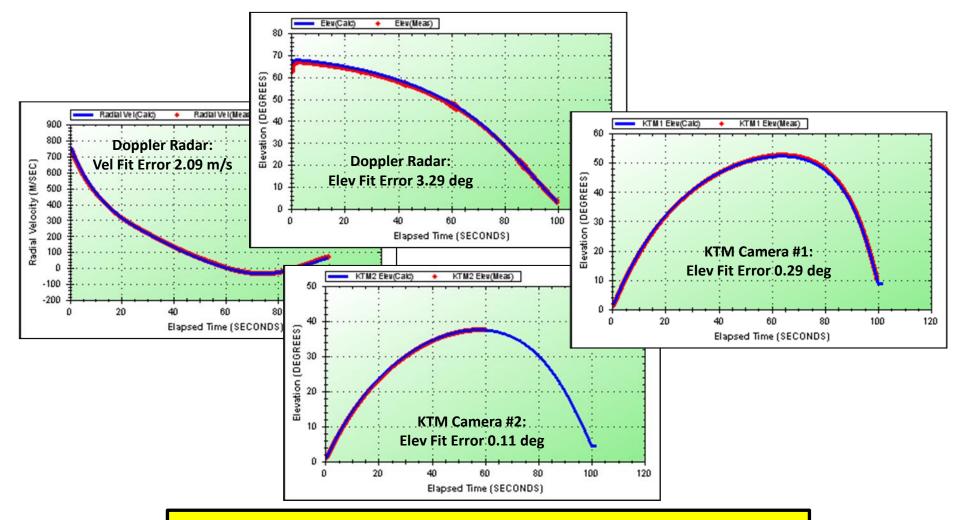
- 155mm Artillery
- Hydra 70 Rocket
- 120mm Mortar
- 105mm

Ground-Based: Radar

- Tracking Doppler Radars
 - Provides Radial Velocity, Azim. & Elev.
 - "Behind the Gun" & "Down Range" Doppler
- Position Radar
 - Provides Range, Azim. & Elev.

20

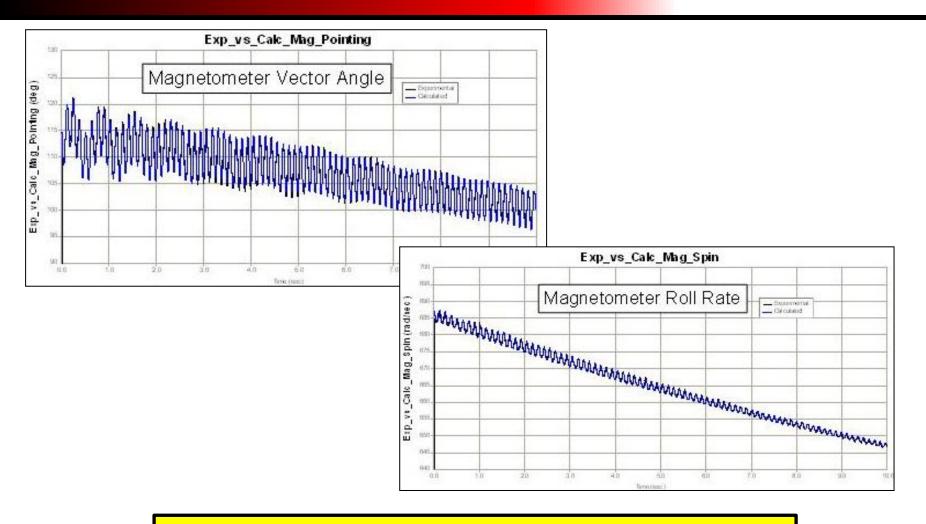
62030001xerang-sffxwrp: Prim Elev Fit Error = 0.13 (deg)


Elev(Meas)

Elev(Calc)

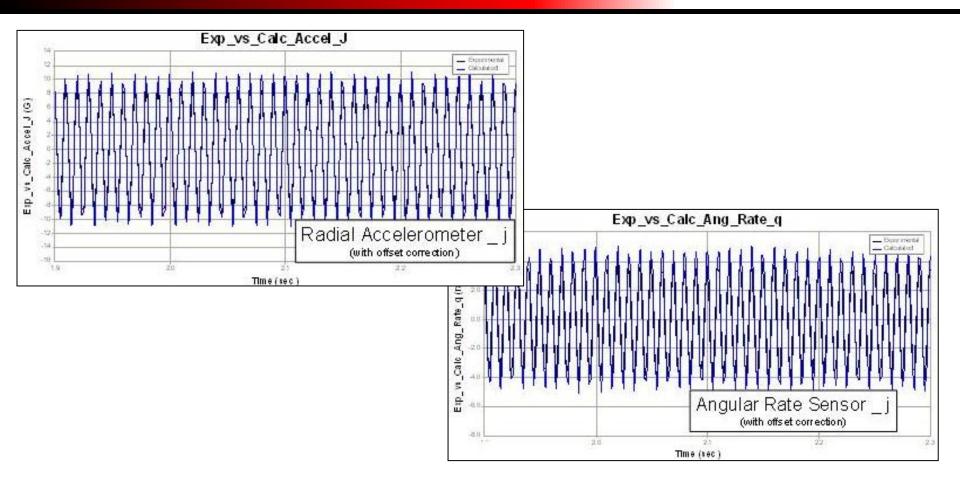
Velocity-Time Data is Basis for Drag/Thrust Solution

Ground-Based: Radar plus KTM



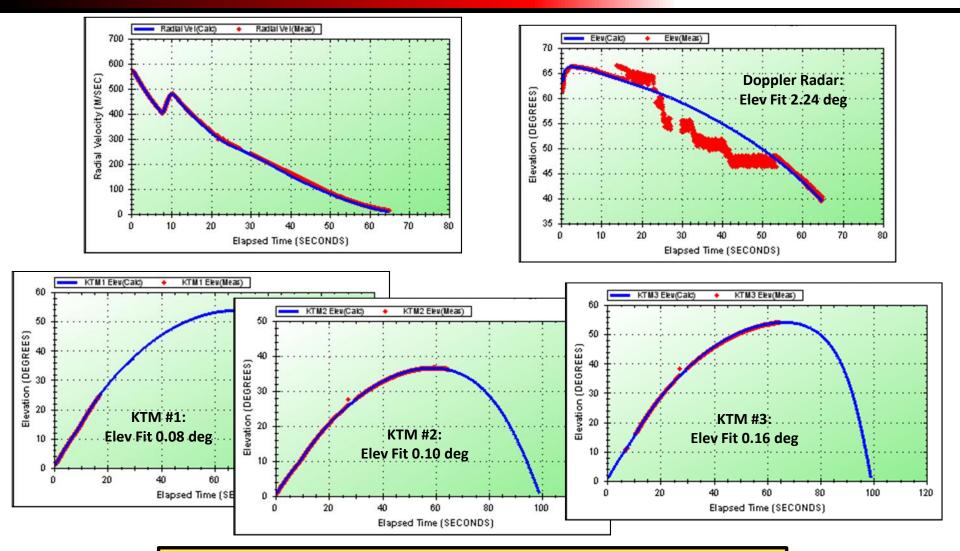
Simultaneous Reduction of Multiple Source of Data

On-Board: Magnetometers



Magnetometer Provides Yaw & Roll Angle Data

On-Board: Accelerometers



Accelerations & Angular Rates Provide Information about Normal Force Coefficient & Dynamic Stability

Ground-Based: Radar plus KTM

Data Fusion Can Help Overcome Poor Test Measurements

Summary & Conclusions

Improved Data Fusion

- Combining of sensor data from disparate sources
- Improved Fit Accuracy
- Use fewer KTM cameras to reduce test cost w/equivalent accuracy
- Feedback Loops Direct from Test to Design Activity
 - Aerodynamics
 - Stability
 - Control Systems, Guidance, and Sensors

Tools Must be Adaptable

- New data sources/instrumentation
- New control systems

Log Sheet Display Tree Expand Collapse		Shot Analysis I
	► 1	M795_155mm_0_rad
	2	M795_155mm_1_rad
	3	M795_155mm_2_rad
	4	M795_155mm_3_rad
Primary Doppler Radar	5	M795_155mm_4_rad
	6	M795_155mm_5_rad
MPS-25	7	M795_155mm_6_rad
	8	M795_155mm_7_rad
⊕ GPS ⊕ Position Radar	9	M795_155mm_8_rad
	10	M795_155mm_9_rad
	•	4

Data Fusion of Data from Different Sources Gathered from Live Fire Testing Can Improve Both TSPI and Aerodynamics

Alan F. Hathaway Arrow Tech Associates, Inc. South Burlington, VT 05403 802-865-3460 x12 <u>alan@prodas.com</u>