# **QinetiQ**

# Assessing bullet terminal effects



14 May 2014

QINETIQ/14/01244

### Contents

- 1. The method for testing bullet lethality
- 2. Using Flight Follower to characterise bullet flight behaviour
- 3. Hydrocode modelling
- 4. Conclusions



1

The method for testing bullet lethality



## 1 Bullet performance

Bullet performance depends on two things

- 1. Amount of energy deposited
- 2. Depth of energy transfer



early turning



late turning





# 1 Example gel block high speed video





## 1 Example gel block high speed video





## 1 Example gel block high speed video





## 1 Calculate the energy transferred









Note: KE= Kinetic Energy

EKE=Expected KE



## 1 Strike yaw (and yaw rate) vary with range





## 1 Results comparison





#### 1 Outcomes

- The Expected Kinetic Energy (EKE) of a bullet is greatly influenced by the position of energy deposition within the target
- This position is greatly influenced by yaw at strike
- Testing using downloaded ammunition does not correctly replicate strike yaw and thus can give misleading results
- Improvements to the trials set-up mean that firing at real ranges is feasible:
  - New cameras that don't need such bright lighting
  - Use of high powered LED lights instead of pre-triggered flash bulbs
  - Use of a stripper plate to protect the gelatine target
  - Improved gelatine block manufacturing methodology



2

Using Flight Follower to characterise bullet flight behaviour



## 2 Ballistic coefficients define how a projectiles moves

#### Ballistic coefficients:

- Drag and yaw drag
- Lift
- Magnus
- Damping force
- Spin damping moment
- Overturning moment
- Magnus moment
- Damping moment

These are not single values: most vary according to projectile velocity and spin rate They are determined from analysis of free-flight (not wind tunnel) observations Ideally, you'd do this in a spark range



## 2 Example of recorded bullet flight





## 2 Recorded values compared to yaw theory





#### 2 Outcomes

- The flight follower allows the pitch distribution along the flight line to be established
- The yaw amplitudes and rates are distinguishable and measurable
- A detailed analysis for a 5.56 mm bullet was achieved and the ballistic coefficients were a good match with the 'accepted' values for this bullet
- The flight follower provides a non-intrusive technique that can be incorporated into other trials
- The infrastructure required is considerably less demanding than alternative systems



3

# Hydrocode modelling



## 3 Hydrocode modelling

- This work used the QinetiQ 'GRIM' Eulerian hydrocode.
- The physical properties of the bullet and gelatine are defined using material models over a range of loading conditions.
- A gelatine constitutive model was determined from available data.





## Hydrocode modelling: early results





3 Conclusions



#### **4** Conclusions

- A technique for providing a quantification of bullet lethality has been devised
- 2. A cost effective method of determining bullet aeroballistic data is being developed
- 3. Hydrocode modelling offers a means of understanding performance
- 4. Tests strike a good balance between representativeness and repeatability
- 5. Procurement and use decisions can be made using (demonstrably) valid data
- Linkage between test facilities and scientific / engineering resource to provide improvements to testing



## Acknowledgements and Points of contact

This work was conducted on behalf of UK MOD Defence General Munitions Dismounted Munitions Project Team

Points of contact:

Alex Davies: Capability Group Leader Guns and Ammunition

aedavies@ginetig.com

+44 (0)1959 515799

Graham Smith: Business Development Manager

gsmith1@qinetiq.com

+44 (0)1959 514078



