

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Systems Thinking in Fire Control Software Development

April 2014 Ross D. Arnold

UNCLASSIFIED Distribution Statement A

- ARDEC Intro
- ▶ Intro to Fire Control Systems
 - Brief description
 - Examples
- ▶ Intro to Systems Thinking
- Systems Thinking in the SW Dev Process
 - Example Cases
 - Key Points
- ▶ Conclusion

- U.S. Army Armament Research, Development and Engineering Center (ARDEC)
 - Located at Picatinny Arsenal, NJ
 - Mission: Empower, unburden, and protect the Warfighter by providing superior armaments solutions that dominate the battlefield.
 - What does that mean?
 - Developing advanced weapons, ammunition, and fire control systems
- Weapons and Software Engineering Center (WSEC)
 - Sub-division of ARDEC
 - Software design and development

- ▶ What is a Fire Control System?
 - ▶ Software & hardware that enables:
 - Digital communications
 - Fire missions
 - Ballistic calculations
 - Point and shoot
 - Movement
 - ▶ Purpose:
 - Digitize manual gunnery
 - → Applied to:
 - Towed Artillery
 - Mortars
 - Self-Propelled Artillery

▶ Artillery Fire Control:

- **▶** M119 (Towed 105mm)
- M777 (Towed 155mm)
- Portable Excalibur Fire Control System (PEFCS)
- Paladin (Self-propelled 155mm)

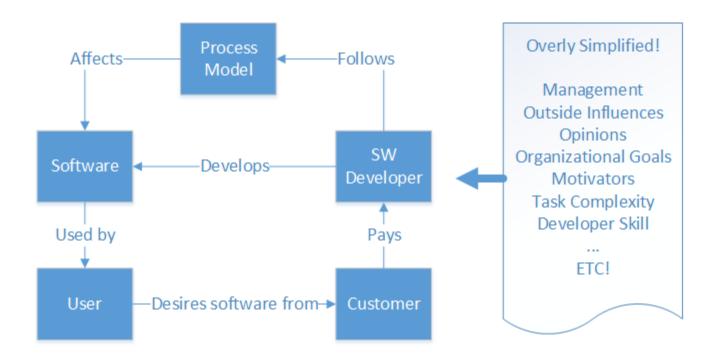
Mortar Fire Control:

- Mortar Fire Control System (MFCS)
- Lightweight Handheld Mortar Ballistic Computer (LHMBC)
- Dismounted 120mm (MFCS-D)
- Precision Lightweight Universal Mortar Setter System (PLUMSS)

Systems Thinking Definition

- → A set of synergistic thinking skills used to understand complex systems and predict their behavior.
 - See "wholes" and "parts" simultaneously
 - Understand how system structure causes behavior
 - Recognize interconnections and feedback loops
 - Predict dynamic behavior
 - Simplify through abstractive modeling
- Seeing the world "differently"
- Not intuitive

- ▶ How does this relate to software development?
 - Software dev process is a complex system
 - Not to be confused with the software itself!
 - Development process has:
 - Many elements
 - Interconnections
 - Feedback loops, delays
 - Uncertainty

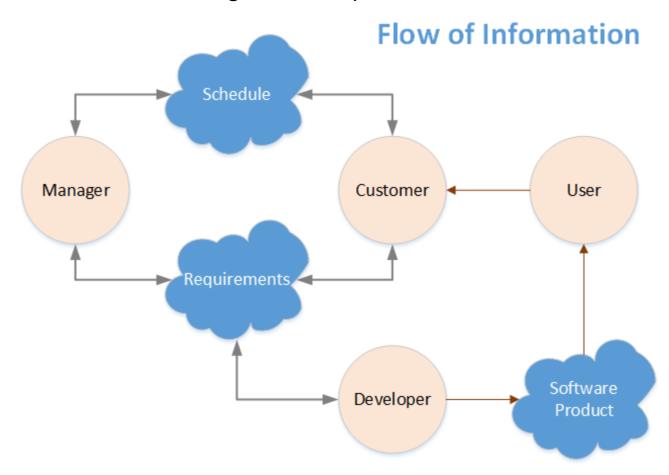


Is this accurate?

RDECOM

➤ All models are wrong, some are useful. (George Box)

Systems Thinking in SW Code Reviews

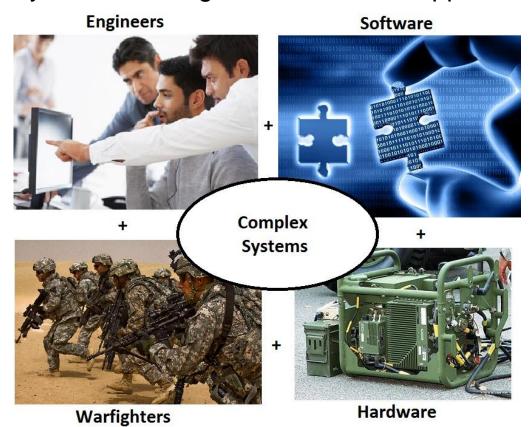

▶ Case 1: Code Reviews

- ➤ Traditional approach mandate reviews
 - Policy resistance (classic systemic problem)
- What's the system?
 - All developers "lazy?" No!
 - Humans like to perceive value
 - Recording results = context switching
- → Solutions?
 - Improve information flow
 - Make recording easy
 - Many more, depends on system

What's wrong with this picture?

Systems Thinking in SW Productive Development

- ▶ Case 3: Improving Productivity
 - "Crack the whip?" No!
 - One Systemic Option: Minimize Distractions
 - Context switching
 - Fire-fighting
 - Bugs
 - Constant "urgent" requests
 - Best Practices
 - Clear task
 - Devote X time per day to task
 - Target deadline
 - Empowerment devs know their purpose



- Systems Thinking Key Points
 - The software development process is a system
 - It has humans, humans are complex
 - Information flow
 - Lags and delays between decisions
 - Feedback loops, many of which might not be intuitive
 - Problems require systemic investigation
 - There is no blame! (Senge 1990)

Systems Thinking in SW Conclusion

- Systems are everywhere!
 - Software development is no exception.
 - Systems thinking is a transferable approach.

Questions?

Contact:

Ross Arnold
Towed Artillery Technical Lead
U.S. Army ARDEC
(973) 724-8618
ross.arnold@us.army.mil

