Safety evaluation of digital post-release environment sensor data interface for distributed fuzing systems

57th Fuze Conference, Newark, NJ

Wednesday, July 30th, 2014

Open Session IIIA, 3:20 PM

<u>S. Ebenhöch</u>, C. Schoppe, Dr. I. Häring Funded by Federal Office of Bundeswehr Equipment, Information Technology and In-Service Support (BAAINBw K 1.3)

Contact:

Stefan.Ebenhoech@emi.fraunhofer.de

Safety evaluation of digital post-release environment sensor data interface for distributed fuzing systems: <u>Content of presentation</u>

Motivation

- Post-release environment sensor (PRES) interface
- Simulation tool
- Safety evaluation results

Conclusion

Motivation: Distributed fuzing systems

- Flexibility in geometry
- Compatibility of different fuzing, sensor weapon systems
- Improved replaceability of components
- Scalability of system performance
- Simpler realization of redundancy and separation of safety functions

Application of digital non-proprietary standard interfaces

Motivation: Standard SAE AS5716A

- Current situation: mainly analog interfaces in airborne fuzing systems
- SAE AS5716A: "Standard Electrical and Logical Interface for Airborne Fuzing Systems"
 - Addresses weapons using MIL-STD 1760
 - New revision: Pure digital data interface between sensor for detection of arming environment and fuzing system

Goal: Evaluation of safety level - Is the new digital data transmission at least as safe as the established analog transmission in airborne fuzing systems?

> *Frank Robbins, Presentation: Fuzes for Air Force Unguided and Precision Guided Weapons, 2001: held at 45th NDIA Fuze Conference. 4

Class	3	interface
Ciuos	0	muonuoo

PRES-Interface: Characteristics

- Definition of electrical interface characteristics
 - RS-422 standard
 - Transmission rate: 38.4 kbps
 - Simplex mode
- Classification of interfaces
 - PRES-Interface only in class 3
 - Subclasses specify data type of sense (analog, digital)
- Definition of protocol structure for serial data interface

20	FUZING SY STEM MAIN HOUSING	WEAPON SIDE			
63	SIDE OF INTERFACE	OF INTERFACE			
	SERIAL DATA LINES				
	FUZING SYSTEM TRANSMIT SERIAL DATA	A			
	FUZING SYSTEM TRANSMIT SERIAL DATA	B			
	WEAPON TRANSMIT SERIAL DATA A				
	✓ WEAPON TRANSMIT SERIAL DATA B				
	POST RELEASE ENVIRONMENT SENSOR SERIAL	DATA A**			
	POST RELEASE ENVIRONMENT SENSOR SERIAL	DATA B**			
·	DOWED				
	PORT 3 POWER*				
	1 OKT 31 OWER KETOKK				
	DISCRETE SIGNAL S				
I (
	POST RELEASE ENVIRONMENT SENSOR SIGNAL				
II (
	EOD ARM STATE MONITOR RETURN				
	ADDRESS BIT CONNECTION An				
ADDRESS BIT CONNECTION AD					
	ADDRESS BIT CONNECTION A2				
	REFERENCE LINE S				
	SIGNAL RETURN				
	STRUCTURE GROUND				
	WE WE	Brant.			
2012	$\frac{m}{T}$.	STREET,			
MAX3488	MAX3488	STANDARD			
1	5Y				
Tx	$0 > _{62} \qquad \int \int \int \int L_{max} _{R} \rightarrow $	Electrical Characteristics of Balancel			
		Vallage Digital Interface Circuits			
	DC 400 transmission line				
	RS-422 transmission line				
		Investor 108			
_	4				
	GND GND	an or which is the provention of the procession			
	650578	TA NELA			

PRES-Interface: Protocol

Every byte (service data unit, SDU) is added by start, stop and (even) parity bits

PRES-Interface: Checksum

Checksum algorithm: »When each data word (including the checksum word) of a message is rotated right cyclically by a number of bits equal to the number of preceding data words in the message, and all the resultant rotated data words are summed using modulo 2 arithmetic to each bit (no carries), the sum shall be zero.«

Word = 2 SDUs Par							Parit	y bits									
$(b_{0,0})$	$b_{0,1}$	$b_{0,2}$	$b_{0,3}$	$b_{0,4}$	$b_{0,5}$	$b_{0,6}$	$b_{0,7}$	$b_{1,0}$	$b_{\!1,1}$	$b_{1,2}$	$b_{1,3}$	$b_{\!\!1,4}$	$b_{1,5}$	$b_{1,6}$	$b_{1,7}$	p_0	p_1
$b_{2,0}$	$b_{2,1}$	$b_{2,2}$	$b_{2,3}$	$b_{2,4}$	$b_{2,5}$	$b_{2,6}$	$b_{2,7}$	$b_{3,0}$	$b_{3,1}$	$b_{3,2}$	$b_{3,3}$	$b_{3,4}$	$b_{3,5}$	$b_{3,6}$	b _{3,7}	p_2	p_3
$b_{4,0}$	$b_{4,1}$	$b_{4,2}$	$b_{4,3}$	$b_{\!$	$b_{4,5}$	$b_{4,6}$	$b_{4,7}$	$b_{5,0}$	$b_{5,1}$	$b_{5,2}$	$b_{5,3}$	$b_{5,4}$	$b_{5,5}$	$b_{5,6}$	<i>b</i> _{5,7}	p_4	p_5
$b_{6,0}$	$b_{_{\!6,1}}$	$b_{6,2}$	$b_{6,3}$	$b_{_{6,4}}$	$b_{_{6,5}}$	$b_{_{\!6,6}}$	$b_{6,7}$	$b_{7,0}$	$b_{7,1}$	$b_{7,2}$	$b_{7,3}$	$b_{7,4}$	$b_{7,5}$	$b_{7,6}$	$b_{7,7}$	p_6	p_7
$b_{8,0}$	$b_{\!_{8,1}}$	$b_{\!_{8,2}}$	$b_{\!_{8,3}}$	$b_{\!_{8,4}}$	$b_{\!_{8,5}}$	$b_{\!_{8,6}}$	$b_{\!_{8,7}}$	$b_{9,0}$	$b_{9,1}$	$b_{9,2}$	$b_{9,3}$	$b_{9,4}$	$b_{9,5}$	$b_{9,6}$	$b_{9,7}$	p_8	p_9
$C_{0,0}$	$C_{0,1}$	$C_{0,2}$	<i>C</i> _{0,3}	$C_{0,4}$	$C_{0,5}$	$C_{0,6}$	$C_{0,7}$	<i>C</i> _{1,0}	<i>C</i> _{1,1}	<i>C</i> _{1,2}	<i>C</i> _{1,3}	$C_{1,4}$	<i>C</i> _{1,5}	<i>C</i> _{1,6}	<i>C</i> _{1,7}	p_{10}	(p_{11})
Checksum																	

PRES Subclass Enumerator	PRES Sign-of-Life	PRES Data Type
PRES Data-1st byte	PRES Data-2nd byte	PRES Data-3rd byte
PRES Data -4th byte	PRES Data 5th byte	PRES Data -6th byte
PRES Data-7th byte		

PRES-Interface: Checksum

Checksum algorithm: »When each data word (including the checksum word) of a message is rotated right cyclically by a number of bits equal to the number of preceding data words in the message, and all the resultant rotated data words are summed using modulo 2 arithmetic to each bit (no carries), the sum shall be zero.« $(b_{i,0} + b_{i,1} + b_{i,2} + b_{i,3} + b_{i,4} + b_{i,5} + b_{i,6} + b_{i,7} + p_i) \mod 2 = 0$

Simulation tool: Architecture

Development of flexible simulation platform for the analysis of various protocol structures

Simulation tool: Error modeling

- Random errors
 - Model: Binary symmetric channel
 - Transmitted bit is flipped with the probability p
- Burst errors
 - Specific burst model with several
 - Dynamic variation of model in simulation
- Coupled simulation (combination of protocol and circuit level):
 - Circuit model of transmission line
 - Electrical modeling of interferences (e.g. lightning)

Simulation tool: Mathematical validation

- Assuming that bit flips occur independently with probability p
- Using binomial distributions we find the following probabilities for n words
 - For not detecting bit flips using checksum only:

$$P^{\text{CSA unrecognised}}(p) = \left(\sum_{i=1}^{\lfloor n/2 \rfloor} {n \choose 2i} p^{2i} (1-p)^{(n-2i)} + (1-p)^n \right)^{16} - (1-p)^{16n}$$

For not detecting (actual) bit flips using parity bits only:

$$\mathbf{P}^{\mathcal{P}\mathcal{B} \text{ unrecognized}}(\boldsymbol{p}) = \left(\sum_{i=0}^{4} \binom{9}{2i} \boldsymbol{p}^{2i} (1-\boldsymbol{p})^{9-2i} + (1-\boldsymbol{p})^{9}\right)^{12} - (1-\boldsymbol{p})^{12n}.$$

- Combinatorial considerations yield that there have to be at least four bit flips so that CSA as well as PB do not detect defectiveness of message
 - Mathematical transformation of presented progressive rotation

$$P^{\text{Four bitflips undetected}}(p) = 2\left(\sum_{i=0}^{8}\sum_{j=0}^{n-1}\min\{i, n-1-j\}(8-i) + \sum_{i=0}^{8}\sum_{j=0}^{n-1}\sum_{k=0}^{(n-1)-(i+j)}k\right)p^{4}(1-p)^{18n-4}$$

Safety evaluation results: Random errors

- Simulation of 10¹⁰ messages for every bit flip probability
- Good match between simulation and combinatorial consideration (for small p)
- For high bit flip probabilities checksum and parity bits mechanisms are probabilistically independent (
 P^{CSA unrecognited}
 P^{PB unrecognited}

■ Probability of bit flip 10⁻³ → Probability of undetected erroneous message 10⁻⁹

Safety evaluation results: Burst errors

Burst error model

- Simulation of 3.10⁶ messages
- Variation of model parameters
- ➔No undetected erroneous messages
- Electrical modeling of interferences
 - Performance of coupled simulation
 - Modeling interferences according to MIL-STD 464 (Electromagnetic environmental effects)
- ➔No undetected erroneous messages
- Future work
 - Evaluation of data transmission reliability in laboratory experiments

Conclusion

Digital data transmission: Minor sensitivity to electrical interferences

- High efficiency of mechanisms for error detection (check sum and parity bits)
 - Random errors: For common bit flip rates, probability of undetected erroneous message less than 10⁻⁹
 - Burst errors: Acceptable safety levels achieved by first analyses, no undetected erroneous messages

➔ Fraunhofer EMI has an efficient simulation platform for safety and reliability analysis of digital data transmission (analysis on circuit and protocol level)

Conclusion

- Further (possible) safety features of PRES-interface to prevent unintentional arming
 - For fuzing activities several messages in sequence have to represent the same value
 - Plausibility checks of fuzing system could identify erroneous sensor data (for some SDUs only a few valid states are possible)
 - Checking compatibility between sensor and fuzing system (correct class & subclass)
 - Detection of illegal transmission sequences (sign-of-life & start/stop bits)
 - New interface offers better set-up between PRES, fuzing system and weapon for specific safety criteria

→Usage of digital PRES-Interface would provide a considerably improved transmission reliability and therefore safety in most of the standard relevant applications.

→PRES-Interface could be an important element for future distributed systems

Thank you for attention! Questions...?

Stefan Ebenhöch

Group Leader System Reliability Safety Technology and Protective Structures

Fraunhofer EMI Am Klingelberg 1 79588 Efringen-Kirchen Germany Tel.: +49 7628 / 9050 - 738 Stefan.Ebenhoech@emi.fraunhofer.de

