Naturalistic Ecologically Designed Ontology for Human-System Interaction in Immersive Environments NDIA Human Systems Conference Feb 4-5, 2014 Arlington, VA Session 1: Systems Interface and Cognitive Processing Dr. Kelly Hale Matthew Johnston Amanda Bond #### The Problem - DoD networks include vast array of intelligence sources (e.g. GEOINT, HUMINT, SIGINT) and non-intelligence sources (e.g. Spot Reports, After-Action reports etc. - Various repositories hold numerous data sources in a variety of modes (e.g., text-based information, UAV or point of view videos, photographs, and audio files). - Wading through vast amounts of information to acquire and maintain SA requires high levels of cognitive processing in order to perceive, comprehend and predict results - Existing human machine interfaces require the intelligence analyst to continually reorient themselves to the mission and/or situation as they transition between data sources. - Using interfaces within the real world (eg. mice/keyboards) while attempting to become a part of the virtual world can cause cognitive competition between the two environments - The analyst is therefore unable to establish a primary egocentric reference frame which prevents establishment of presence #### **A Vision** ## The Challenge of the Remote Task - Intelligence task is often done at locations far outside of the areas of interest - Remote intelligence analysis allows an analyst to work on the same scenario, area, or human network for months or even years - Systems used for intelligence analysis do not have to be scalable, or rugged, or otherwise portable #### Major disadvantage: - Analysts have physical detachment from the combat arena - Lack of environmental presence, or spatial presence, can lead to increased workload - Decreased critical SA and potentially impact decision-making abilities #### **Potential Solution: Immersed VE** Rich, fully-immersive synthetically-augmented environments have been deployed successfully in several domains - Naturalistic interactions with data and objects in virtual world - Allow for creation and maintenance of a primary egocentric reference frame - Optimize transitions between real world and virtual world through ecological design #### **Potential solution:** A naturalistic, ecologically-designed interface between the human and the fully-immersive synthetically-augmented environment can increase feelings of presence and immersion in addition to increasing situational awareness ## **Strategies to Enhance Cognitive Performance** - Model the operator's Decision Making process, - Identify techniques and cues within the immersive environment that may improve contributory components of the decision making process, and - Apply those immersive cues to improve operator's situation awareness and resultant decision making performance ## **Modelling Decision Making** - Identify cues within the immersive environment that may improve contributory components of the decision making process - Apply those cues to improve the operator's SA and decision making performance - The cycle is broken down into two subprocesses: - Foraging loop: gather information that is associated with the hypothesis/question being evaluated in sensemaking loop - Sensemaking loop: the analyst creates schemas and hypotheses based on the evidence extracted during the foraging cycle - After developing hypotheses, a top-down process is used to determine if it is supported by all of the information provided. Figure 1. Think-Loop Diagram (Pirolli & Card, 2005) ## **Enhancing Presence in VE** Presence requires constant sampling of environment to determine responsiveness, judge realism and believability, and anticipate how it will react Primary Egocentric Reference Frame (PERF) Individual's first person mental-model vantage of the world To enhance presence VE, Witmer & Singer (11) have identified influential categorical factors that can be manipulated in interface design | Control | Sensory | Distraction | Realism | |---------------------------------------|--|---------------------|---| | Degree | Modality | Isolation | Scene realism | | Immediacy | Environmental Richness | Selective Attention | Information consistent with objective world | | Anticipation of effect | Multimodal presentation | Interface Awareness | Salience | | Mode | Consistency of
Multimodal information | | Separation Anxiety | | Physical Environment
modifiability | Movement Perception | | Disorientation | | | Active Search capability | | | #### **Performance Tradeoffs** | Consideration | Description | |----------------------|--| | Degree of
Control | Operator will be able to select the desired sensor system for display and processing or inhibition. | | Immediacy of Control | System response times to the operator's inputs will be minimized | | Anticipation | System processing functions, display selection and formatting will be consistent for all operations and maintain a uniform appearance | | Mode of Control | Multimodal interactions are recommended to allow expanded operator cognitive capacity through use of appropriate pairing of cognitive processing requirements with task requirements | Gesture Voice interaction Tablet/touch screen **Other considerations:** Physical Environment Modifiability; Sensory Modality; Environmental Richness; Consistency of Multimodal Information; Degree of Movement Perception; Active Search; Interface Awareness; Selective Attention etc. ## **Ecological Multimodal Ontology** # **Multimodal Ontology** | Task | Action | PERF/ERF | Task/Technology
Considerations | 2015 | 2025 | |-----------------------------------|-----------------------------|---|--|--|--| | Navigate
Three-
Dimensional | Turning Left,
Right, Up, | Degree of Control,
Immediacy of
Control, Anticipation
of Events, Mode of
Control, Degree of
Movement
Perception, Active | Naturalistic movement
is walking; not all
technology space
support walking. Users
should be able to
"walk" to a given
location, and fly to | Gesture: non-
dominant hand
moves left, | Gesture:
Slight seated
leaning, head | | Terrain Maps | Down | Search | farther locations. | right, up, down | tracking | | | | Degree of Control,
Immediacy of
Control, Anticipation
of Events, Mode of | | Gesture: Non-
dominant hand
extension
(forward) and | | | Navigate | _ | Control, Degree of | | contraction | | | Three- | Moving | Movement | | towards the | Gesture: | | Dimensional | Forward & | Perception, Active | | head | Slight seated | | Terrain Maps | Backward | Search | | (backwards) | leaning | ## **Application of the Ontology** | Step | Task | Interaction | Attentional Focus | Considerations | |------|---------------------------|--------------------|-----------------------------------|--| | 1 | Open UAV Feed
Window | Voice Command | Heads-up Immersive
Environment | Allows eyes-on UAV from
Frame 1 | | 2 | Resize UAV Feed
Window | Two-handed Gesture | Heads-up Immersive
Environment | Maintains eyes-on UAV
feed | | 3 | Pan 3D Terrain | Non-Dominant Hand | Heads-up Immersive
Environment | Frees up dominant hand for
note-taking, other tasks;
maintains eyes-on UAV
feed | ## **Future Considerations** | Current Technologies | Future Integration | | |--|---|--| | Gesture recognition devices Touch Screen sensitivity Motion based recognition Posture recognition Voice recognition systems User Identification techniques Synthetic Augmentation of contextual information Pointing devices Augmented Cognition | Anomaly detection programs Automated assistance for prioritization and selection of sensor sources Algorithmic generated recommendations for operator actions Adversarial reasoning programs Enhancements in Computer Vision techniques Synthetic augmentation for sensor fusion | | #### **Concluding Remarks** - The Ecological Multimodal Ontology provides a framework for executing task within VE - Ontology can provide interaction design and information presentation guide for optimizing decision making, SA and presence - Ontology applies to enhancing traditional workstations through fully immersive VEs - Applies to multiple domains analogous to ISR activities - Emergency incident command - Security and law enforcement operations - Unmanned system supervision and sensor control - Human-robot mixed team interaction and collaboration