

The Human in Defense Systems

Dr. Patrick Mason, Director Human Performance, Training, and BioSystems Directorate Office of the Assistant Secretary of Defense for Research and Engineering

4 Feb 2014

- Challenges and Opportunities
- Human-Centric Acquisition
- Connections Between the ASD(R&E) Communities of Interest
- Guiding Vision: Man-Machine Interfaces
- Developing a Systems Engineering "Language"

Challenges and Opportunities

- Challenges:
 - Reducing the cost of defense systems throughout their life cycle
 - Research in human systems does not always transition into Programs of Record (PoR)
- **Opportunities**:
 - Human systems research significantly impacts the DOTMLPF spectrum

- The DoD and Industry are working together to:
 - Eliminate bad human-systems integration
 - Develop tactics, techniques, and procedures to optimize human performance

- Request Industry to further participate by:
 - Mirroring the DoD placement of the human at the center of the Acquisition Process
 - Encouraging human systems researchers to think of the Programs of Record as their "customer"

Human-Centric Acquisition

DoD S&T Focus Has Traditionally Been System Centered

A car is not this....

...it is this!

Mostly materiel with human interface

Soldier system is not this...

... it is this!

Mostly human with materiel interface

Human-Centered Acquisition

S&T Insertion into the Acquisition Process

Interactions with the Requirements writers within the Joint Staff and Components will bring human systems considerations into the planning cycle

Connections Between the ASD(R&E) Communities of Interest

Interactions with Human Systems Col

Joint Human Systems IR&D Technical Interchange June 2013

- All 19 companies provided follow-on opportunities
 - Meetings, site visits, data exchanges
 - Key organizations at OSD and Services are engaged
 - Working CRADAs, MOAs, and research proposals
- Industry feedback
 - "Marketplace very helpful to get the "Big Picture" of the Human Systems Col"
 - "Tri-Service approach very effective and efficient"
 - "Senior level insight helped provide context to Fedbizopps data"
 - "Left the Technical Interchange knowing someone in DoD was interested in their projects"
- DoD Next Steps
 - Track actions and status outcomes of projects
 - Committed to using process

Changing the Emphasis of DoD Data Analytics

- Interacting with data analytics researchers to focus part of their research on decision making
- DoD is hosting a Technical Interchange Workshop to better understand how decision scientists, computer scientists, and visual display experts need to interact to optimize decision support tools
- Systems Integration Laboratories (SILs) will be used to evaluate the effectiveness of data analytics toolsets in human decision-making scenarios

Contact: Bindu Nair, bindu.r.nair.civ@mail.mil

Vision for Decision Support

Guiding Vision: Man-Machine Interfaces

Guiding Vision: Natural Human-Technology Interactions

These soldiers will move through this building...without speaking a word

Need to replicate this for humantechnology interactions

More interactive and faster responding "hybrid human-machine teams"

Converge Multiple Domains: Natural Human-Technology Interactions

Contact: CDR Joseph Cohn, joseph.v.cohn.mil@mail.mil

Developing a Systems Engineering "Language"

Army's Soldier System Engineering Architecture (SSEA)

Set-based design:

- A design method that requires a shift in how one thinks about and manages design
- Allows more of the design effort to proceed concurrently and defers detailed specifications until tradeoffs are more fully understood

Contact: Sue Butler, Natick Soldier RDEC, susan.j.butler8.civ@mail.mil

RDECOM

		Systems Engineering Approach	
Platform	MilStd.881	Air	Ground
Chassis/	Construct		
Fiame		Rigid, Static (laws of physics based)	Rigid, Static (laws of physics based)
Subsystems (few examples only)	technical	system
Electronics		Avionics	Vehicle Electronics
Propulsion		Engines, motors	Engines, motors
Optics		Cameras, lens, imaging, sights	Cameras, lens, imaging, sights
Controls		Computers, sensors, levers	Computers, sensors, levers
Fuel / Power		JP-8, batteries, etc	JP-8, batteries, etc
Communications & Networks		Comms devices, systems and network connectivity	Comms devices, systems and network connectivity
System Health		Diagnostics & Maintenance	Diagnostics & Maintenance

RDECOM

System Engineering the Army's "Soldier System"

RDECOM

Soldier and Small Unit Systems Illustration of the Challenge

(in comparison to other Weapons Platforms)

	Systems Engineering Approach Applying		Systems Engineering Approach				
Platform	Soldier and Small Unit MilStd.88		MilStd.881 Construct	Air	Ground		
Chassis/ Frame	Dynamic, Flexible, Variable (biological/physiological/ psychological / sociological based)	Rigid, Static (laws of physics base very small platform	A S	Rigid, Static (laws of physics based)	Rigid, Static (laws of physics based)		
Subsystems (few examples only) socio-technical system							
Electronics	"Humionics" – brain, contextual processing	Worn & borne electroni	cs m	Avionics	Vehicle Electronics		
Propulsion	Muscles & willpower	Engines, motors	р	Engines, motors	Engines, motors		
Optics	Eyes & Vision	Cameras, lens, imagin sights	^{g,} a	Cameras, lens, imaging, sights	Cameras, lens, imaging, sights		
Controls	Brain & cognitive processing Willpower	Computers, sensors, lev	rers r	Computers, sensors, levers	Computers, sensors, levers		
Fuel / Power	Food & water Brain, muscle & willpower	Batteries, fuel cells, generators, etc	d	JP-8, batteries, etc	JP-8, batteries, etc		
Communications & Networks	Verbal & non-verbal language, social networks, culture belongingness / unit cohesion	Comms devices, ad ho mobile network	t	Comms devices, systems and network connectivity	Comms devices, systems and network connectivity		
System Health	Diagnostics, prognostics, treatment, fitness & wellness	Diagnostics & Maintenar	nce O	Diagnostics & Maintenance	Diagnostics & Maintenance		

Soldier/Small Unit: The Army's ONLY biologically-based weapons system platform

- Human systems research provides opportunities to bend the cost curve of DoD acquisition
- DoD is emphasizing the connection between the human and the technology
- DoD is sponsoring several workshops to build upon the "Guiding Visions"