

Use of Operator in the Loop Simulations to Substantiate Metrics for Human-centric Systems How to capture the value / impact of System of Systems warfighters working together

Date: 04 February, 2014

Presented to:

NDIA Human Systems Conference

Personnel, Training, and Leadership Development Session

Presented by:

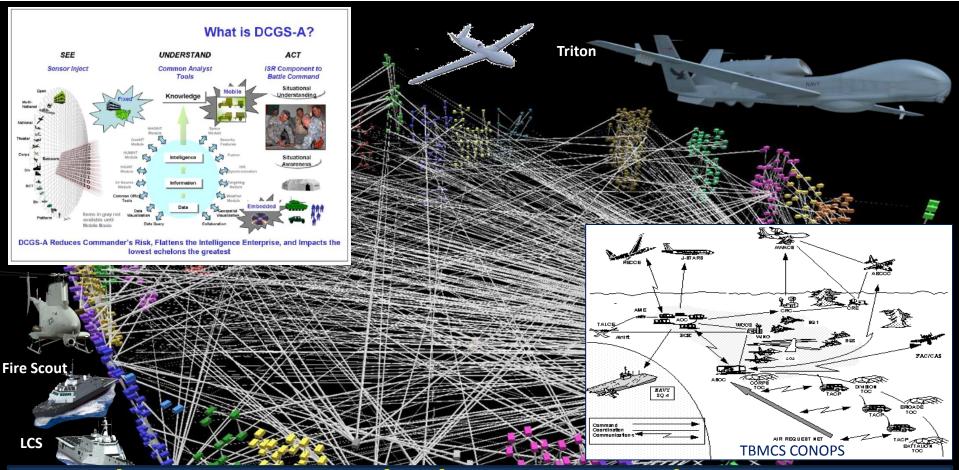
CDR Justin Shoger, USN

Live, Virtual, Constructive Architectures Lead, PMA205

Distribution Statement A: Approved for public release; distribution is unlimited. SPR 2014-27.

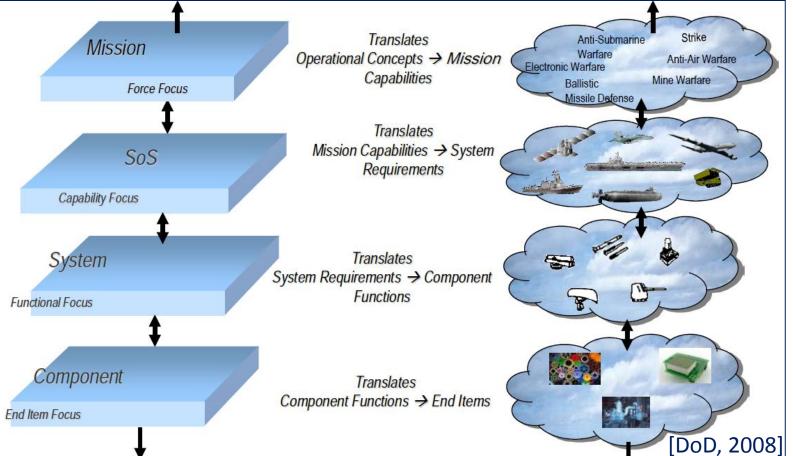
Introduction

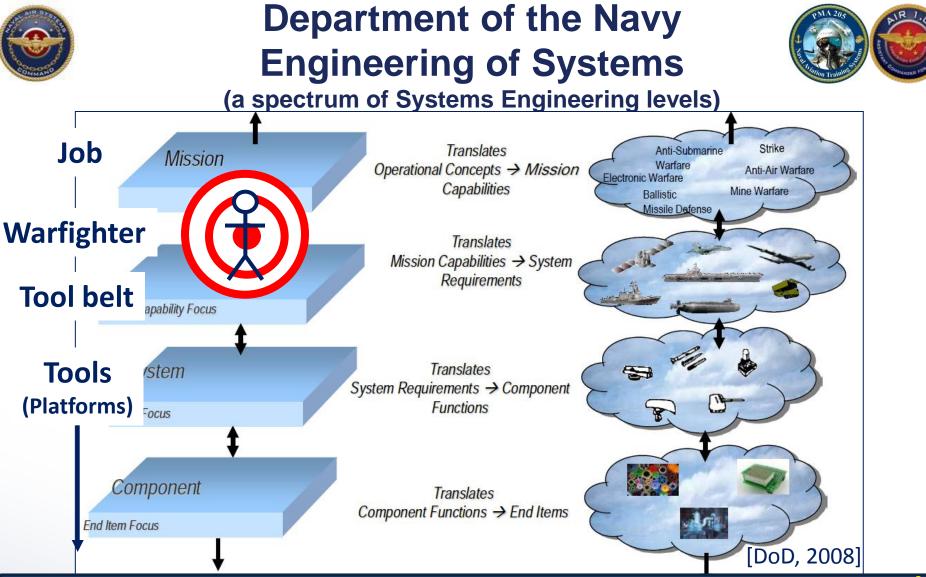
- Topics
 - Measuring the warfighter contribution to a system of systems (SoS)-based capability
 - Actionable metrics for strategic and acquisition decision making
 - Use of operator-in-the-loop (OITL) events to mature and expand our military utility assessment approach to include decision making and human performance
- Take-Aways
 - Apply team macro-cognition work to develop actionable decision making metrics
 - Include the human and human performance as key aspects of warfighting SoSs to produce more effective capabilities
 - Planning and resourcing capabilities
 - Designing warfighting SoSs
- References
 - Department of Defense Systems Engineering Guide for Systems of Systems, 2008
 - Transferring Meaning and Developing Cognitive Similarity in Decision-making Teams: Collaboration and Meaning Analysis Process – Rentsch, et.al., 2010
 - Metrics for Supervisory Control System Evaluation Cummings & Donmez, 2013


Today's warfighter is not just a SoS integrating interface, but is a warfighting aggregator and the critical link in capability effectiveness

Increasing Focus on Human Centricity

These systems, whether unmanned or not, are bringing more information and decision making requirements to the operator

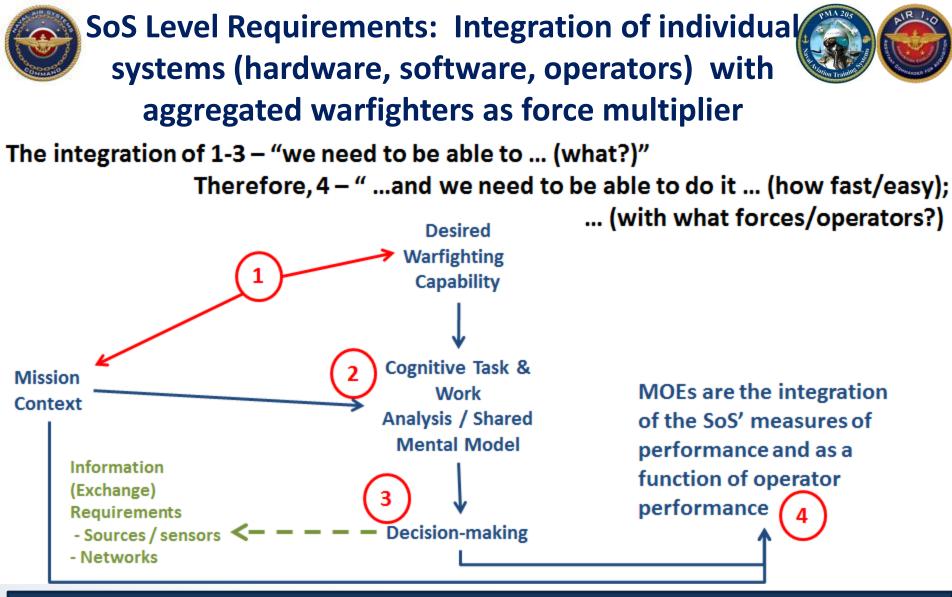

Distribution Statement A: Approved for public release; distribution is unlimited. SPR 2014-27.



Department of the Navy Engineering of Systems

(a spectrum of Systems Engineering levels)

Capturing capability level performance of the warfighter / decision maker is a necessary precursor to decomposing <u>and communicating 'requirements' across these strata</u>


Capturing capability level performance of the warfighter / decision maker is a necessary precursor to decomposing <u>and comunicating 'requirements' across these strata</u>

Advanced Warfighting Capabilities

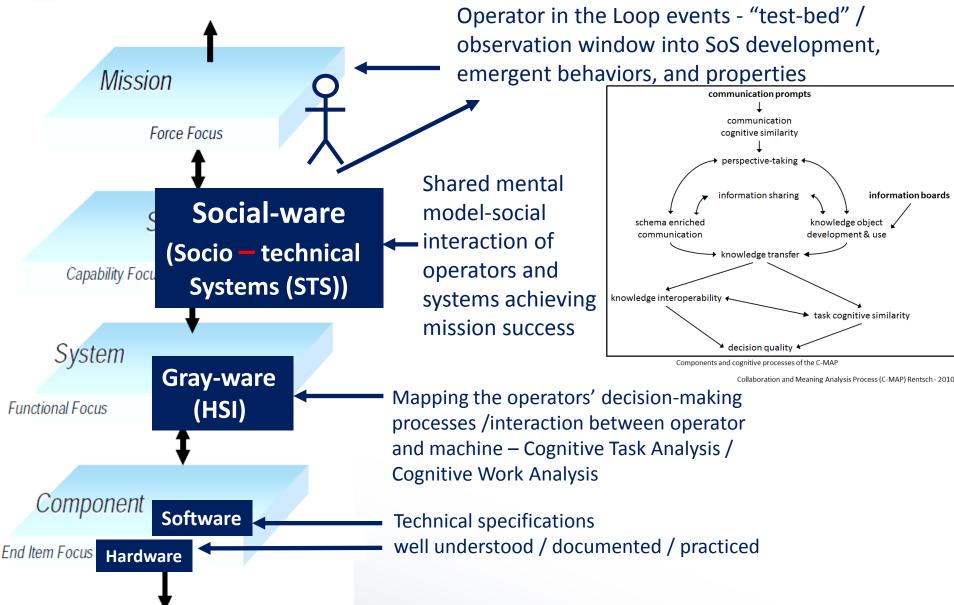
- Products of innovation necessitate development of new employment concepts / tactics
 - Developmental mission-based environment (e.g. OITL)
- New approaches to assessing performance (MOPs) and effectiveness (MOEs) at the capability (i.e. SoS) level
- Operator integration dimension
 - Learning / Training
 - Usability / Effectiveness

New capabilities metrics are needed to effectively inform decision makers

Contributions of all constituent systems with human operator performance as the unifying attribute

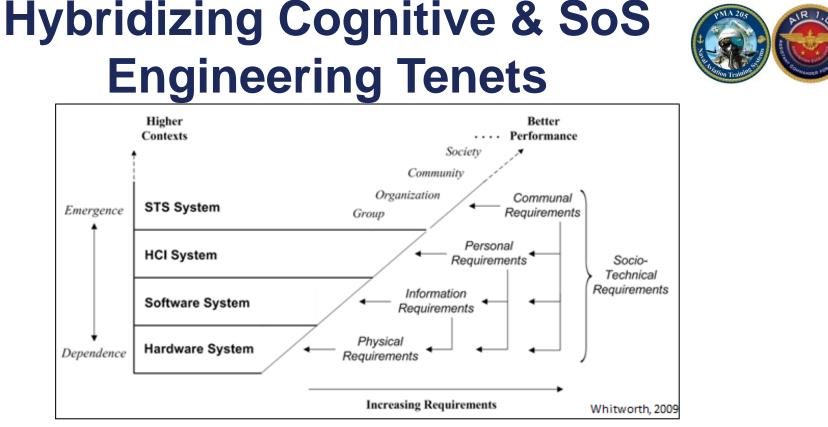
NAVMAIR

HSI Mandate and SoS SE Opportunity


- DoD Instruction 5000.2 requires an acquisition program manager to initiate a Human Systems Integration program in order to:
 - Optimize total system performance
 - Minimize total ownership costs, and
 - Ensure the system built accommodates user characteristics to operate, maintain, and support the system
- Systems Engineering (SE) Guide for Systems of Systems focuses on next level (SoS) human/operator/warfighter interactions across a mission capability
 - Considerations in creating a new capability from existing systems:
 - Human interface variations in and among individual systems
 - Usability / training-required skill sets / personnel requirements
 - Beneficial unintended consequences
- SoS SE must balance SoS needs with individual system needs
 [DoD, 2008]

SoS SE/design to incorporate warfighter performance at the capability (SoS) level to an effectiveness metric

Requirements Evolution



NAV

Distribution Statement A: Approved for public release; distribution is unlimited. SPR 2014-27.

9

IT STS Communal Requirements

- Synergy
- Openness
- Transparency
- Freedom
- Morale
- Privacy
- Identity
- Order

Social Requirements of Technical Systems - Whitworth, 2009

STS Design Principles

- Compatibility
- Minimal Critical Specification
- Variance Control

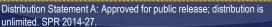
٠

٠

- **Boundary Location**
- Information Flow
- Power and Authority
- Multifunctional Principle
- Support Congruence
- Transitional Organization
- Incompletion

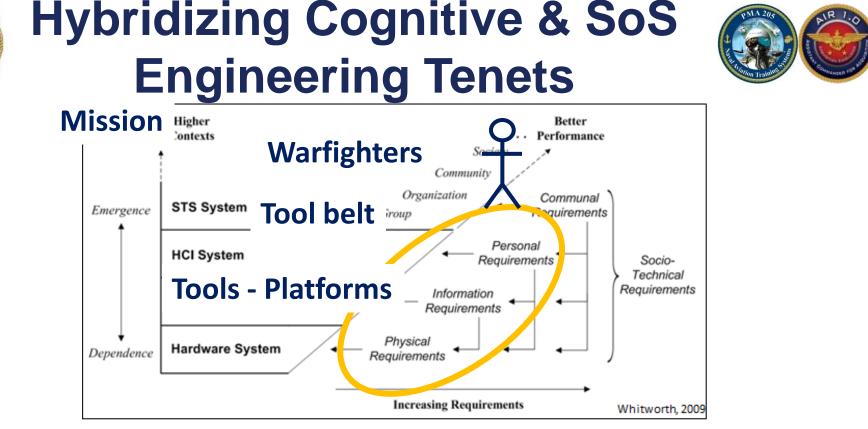
Army-Centric SoS Analysis Definition-Smith et al 2011

Macrocognitive Metrics Goals


- Creativity
- Real-time
- Objective
- Unobtrusive
- Diagnostic

Potential Discriminating Metrics of Cognitive Task Performance in Mission Command -Acchione-Noel, et.al., TRADOC Analysis Center, 2010

Supervisory Control Metric Evaluation Criteria


- Comprehensive
 understanding
- Experimental constraints
- Statistical efficiency
- Measurement technique efficiency
- Construct validity

Metrics for Supervisory Control System Evaluation-Cummings, 2013

10

IT STS Communal Requirements

- Synergy
- Openness
- Transparency
- Freedom
- Morale
- Privacy
- Identity
- Order

Social Requirements of Technical Systems - Whitworth, 2009

STS Design Principles

- Compatibility
- Minimal Critical Specification
- Variance Control

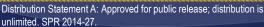
٠

٠

- **Boundary Location**
- Information Flow
- Power and Authority
- Multifunctional Principle
- Support Congruence
- Transitional Organization
- Incompletion

Army-Centric SoS Analysis Definition-Smith et al 2011

Macrocognitive Metrics Goals


- Creativity
- Real-time
- Objective
- Unobtrusive
- Diagnostic

Potential Discriminating Metrics of Cognitive Task Performance in Mission Command -Acchione-Noel, et.al., TRADOC Analysis Center, 2010

Supervisory Control Metric Evaluation Criteria

- Comprehensive
 understanding
- Experimental constraints
- Statistical efficiency
- Measurement technique efficiency
- Construct validity

Metrics for Supervisory Control System Evaluation-Cummings, 2013

11

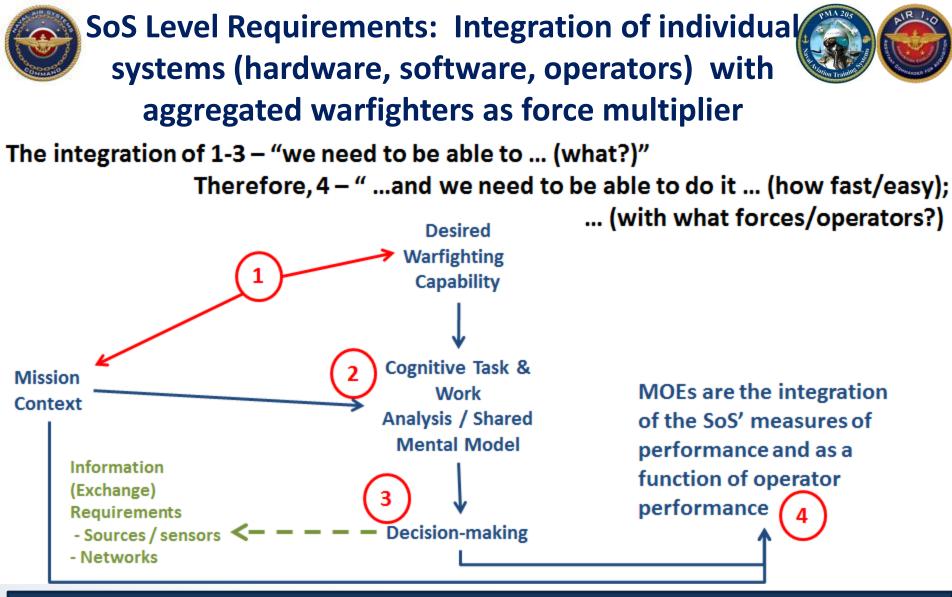
Getting to Warfighting Metrics

Adapted Metric Classes

Mission effectiveness

Component systems' performance

- Usability, adequacy, reliability
- Human behavior
 - Attention allocation
 - Information processing efficiency
 - Recognition efficiency
 - Decision-making efficiency
 - Action implementation efficiency
- Human behavior precursors
 - Cognitive precursors
 - Physiological precursors
- Collaborative metrics
 - Decision maker / Individual Platform collaboration
 - Decision maker / Decision maker
 - Individual Platform / Individual Platform collaboration


Adapted from Metrics for Supervisory Control System Evaluation-Cummings, 2013

Potential SoS Warfighter Metrics

- Battlespace extension (Space)
 - Capacity
- Survivability (Force)
 - Threat exposure
 - Threat effectiveness
- Engagement efficiency (Force)
 - Improve capability to consistently employ on (or ahead of) desired timeline against a specific target (set / presentation / etc.) using a particular kill-chain and achieving a constant / desired level of effectiveness
- Flexibility (Force, Space, Time)
 - Having more than one option (e.g. multiple candidate kill-chains) for the conduct of an engagement against a given target or targetset can facilitate, or translate into, benefits in one or more of the aforementioned areas.
- Decision-making time (Time)

Derived from Herdlick, Johns Hopkins University / Applied Physics Laboratory, Working Papers

Contributions of all constituent systems with human operator performance as the unifying attribute

Leverage OITL Capabilities

- Promoted use developers, testers and USERs
 - Private companies (i.e. Boeing, BAE)
 - National Research Council [2006]
 - Navy SYSCOMs collaboration
 - Application / Implementation analysis
 - Unprecedented Systems Weiss, 2009
 - Military command and control systems Roodt, 2010
 - Rapid prototyping Beevis, 1992
 - Training environments (live, virtual, constructive)
- Understand social dependencies of established SoS emergent properties / capabilities for requirement definition and linkages to military capability factors (force, time, speed)
- Incorporate refined requirements and metrics to improve current SoSs, develop new ones, and as a weighting factor for warfighting capability (hard-ware, soft-ware, gray-ware, social-ware) decisions
- Mixed-fidelity Operator-in-the-Loop Federations-of-Models facilitate development of capability-based designs and new employment concepts
- Establishment of the SoS objective is reached through an iterative process [Keating, 2008]

OITL experiments offer opportunities to capture / quantify operators' cognitive requirements in operationally-representative scenarios

Change What We Should

- Understand and quantify human performance as the ultimate measure for capability effectiveness in developing system of systems solutions
- Adopt capabilities based approach to requirements development and characterization
- Ensure integration and interoperability initiatives yield capabilities-based systems of systems

Change paradigms to incorporate and apply capability-centric requirements

DISCUSSION

References

- DoD Guide to SoS SE
- DoD Instruction 5000.2
- Testing of Defense Systems in an Evolutionary Acquisition Environment, National Research Council, 2006
- The System Engineering and Test Approach for Unprecedented Systems Weiss, 2009
- Modelling as a Tool in the Engineering of Systems of Systems Roodt, 2010
- Rapid Prototyping and the Human Factors Engineering Process Beevis & Denis, 1992
- Test as We Fight O'Donoghue, 2011
- Transferring Meaning and Developing Cognitive Similarity in Decision-making Teams: Collaboration and Meaning Analysis Process – Rentsch, Delise, & Hutchison, 2010 from Macrocognition in Teams: Theories and Methodologies By Michael P. Letskye, ed.
- Social Requirements of Technical Systems Whitworth, 2009
- Metrics for Supervisory Control System Evaluation Cummings, 2013 from The Oxford Handbook of Cognitive Engineering, 2013
- Potential Discriminating Metrics of Cognitive Task Performance in Mission Command -Acchione-Noel, Noel & Cox, TRADOC Analysis Center, 2012
- An Army-Centric System of Systems Analysis (SoSA) Definition Smith et. al. 2011
- Herdlick, Johns Hopkins University / Applied Physics Laboratory, Working Papers, 2013
- System of Systems Engineering Requirements Challenges and Guidelines Keating, 2008

CDR Justin Shoger, USN

PMA205, Aviation Training Systems

Live, Virtual, Constructive Architectures Lead

Naval Air Systems Command
NAS Patuxent River, MD
(301) 757-8149
Justin.l.shoger@navy.mil

