

Differentiating System Architectures

Dr. Ron Carson, Fellow, International Council on Systems Engineering ronald.s.carson@boeing.com

National Defense Industrial Association Systems Engineering Conference, Springfield, VA, October 2014.

Outline

- What is an architecture?
- Motivation why do we need to differentiate architectures?
- How do we measure an architecture?
- How do we determine goodness?
- When is one architecture better than another?

What is an Architecture?

The Boeing Company

ISO/IEC/IEEE 42010:2011 – Systems and software engineering – Architecture description

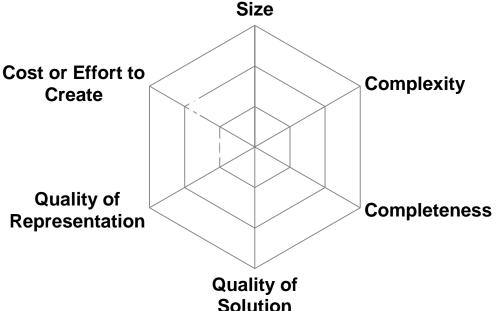
- "Architecture (system) fundamental concepts or properties of a system in its environment embodied in its elements, relationships, and in the principles of its design and evolution"
- Elements: Requirements, behavior, logical/physical elements, data, procedures
- Relationships: Interfaces among internal and external Elements
- Principles: Architecture rules, patterns, and overarching guidance
- Collectively these comprise an Integrated Product Architecture the Enterprise Boeing project for model-based systems engineering (MBSE)

Why do we need to differentiate architectures? Why is it important?

The Boeing Company

- System performance may depend critically on architecture
 - Weight (range, speed): discrete wiring (3 lbs/ft) vs. data bus (0.015 lbs/ft); integrated vs. distributed line-replaceable units; network performance vs. demand based on functional allocations
 - -Fault tolerance and reliability: redundancy of critical systems
 - Fault isolation: distributed functions complicate fault isolation because of allocation of functionality (1 element vs. 20 elements for a specific functional failure)
- There needs to be consistency of program (budget, activities) and architecture
 - Different architectural patterns have different consequences and implicit assumptions
 - Assumptions need to be validated and consistent with the requirements and program
- The wrong architecture can doom the system and the program because of such technical and programmatic impacts

How do we measure an architecture?*


 This is necessary if we want to determine "better than" or "good/bad" The Boeing Company

Technical measures

- Size(t)
- Complexity(t)
- Completeness(t)
- Quality(t)

Stability ≡ f(t)

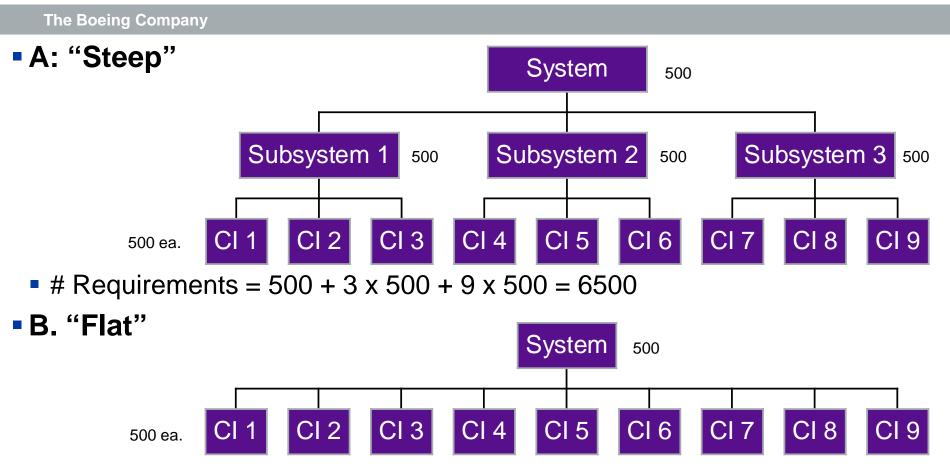
 Measuring stability is most important once a baseline is achieved

Cost/effort are measured by other processes, e.g., earned-value management

• Measures in each category are outlined in the following slides*

*Carson & Kohl, "New Opportunities for Architecture Measurement", Proceedings of INCOSE 2013

Size, Complexity and Stability* Which measures can differentiate architectures?

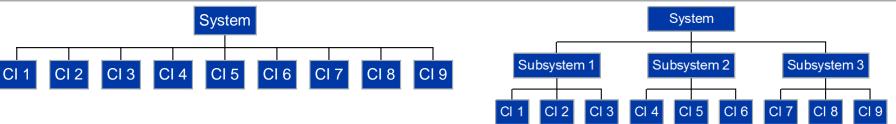

The Boeing Company

Proposed Measures	Definition/Description	Architecture Discriminator?
Number of elements	Count of constituent parts to be bought or developed, at each architectural level vs. time (stability)	Perhaps. The absolute number is generally not as significant as organization and relationships among elements (parts, subsystems, etc.)
Number of external interfaces	Count of logical and physical interfaces vs. time	Yes. Though external interfaces are largely controlled by context and ConOps independently of internal architecture, the number and details may be affected by architectural choices (e.g., hybrid vehicles require two energy/power interfaces) and associated infrastructure.
Number of external relationships	Count of organizational relationships (stakeholders) vs. time	Perhaps. Stakeholders may arise because of technology or architectural choices that require certification.
Number of requirements	Count of requirements at each architectural level vs. time	Yes. Requirements at each level depend on architectural choices; "steeper" architecture yields more levels and total requirements.
	Count of logical and physical interfaces/element vs. time	Yes. More interfaces require more interface management to address information exchanges and distributed functions.
Number of interactions	Transaction types or messages, frequency/element vs. time	Yes. More interaction or data sharing across subsystems requires more analysis and test/ evaluation to understand behavior and failure effects.
Number of states	Count of number of defined states and/or modes vs. time	Perhaps. This may influence the number of requirements because of unique behaviors in defined states/modes.

*Carson & Kohl, "New Opportunities for Architecture Measurement", Proceedings of INCOSE 2013

Copyright © 2014 Boeing. All rights reserved.

Example: "Count of requirements at each architectural level" – Affects Requirements Management (RM)


- # Requirements = 500 + 9 x 500 = 5000
 - -1500 fewer requirements to manage and verify
 - -RM workload is less; analysis to substantiate 1:9 fan-out is more complex

Each alternate has benefits and issues – no consistent preference Copyright © 2014 Boeing. All rights reserved.

Flatter or Steeper Hierarchy: Which is better?

"Count of logical and physical interfaces/element"

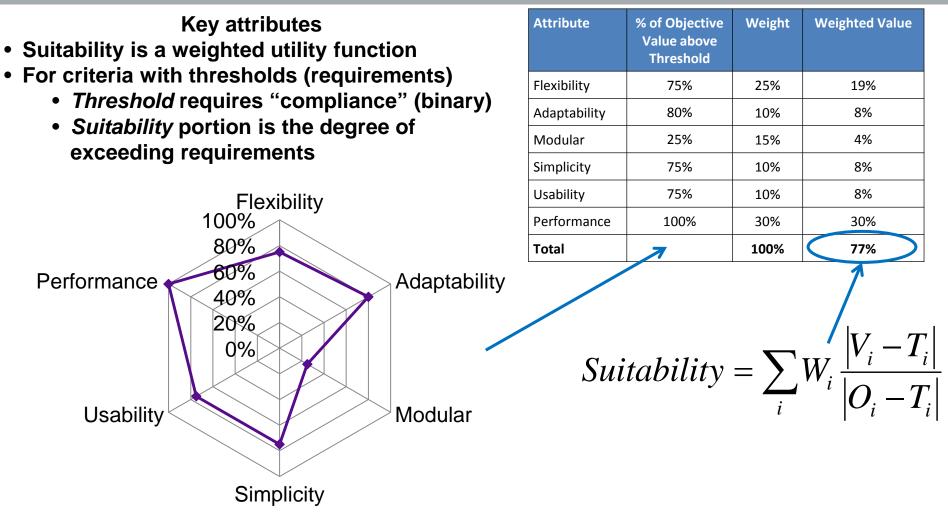
Flatter	Steeper	
Same # requirements at top and bottom	Same # requirements at top and bottom	
 More appropriate if intermediate specifications are unnecessary Internal development Off-the-shelf CIs (no specifications) Highly federated; fewer interfaces 	 Needed when intermediate specifications are necessary Outside organizations Phased development Subsystems with high internal complexity 	
Carson & Kohl, "New Opportunities for Architecture Measurement", Proceedings of INCOSE 2013	Low External Complexity	

Completeness Measures* Which measures can differentiate architectures?

The Boeing Company

Proposed Measures	Definition/Description	Architecture Discriminator?
Requirements addressed	Count of number of top-level requirements addressed by the architecture (traced to architecture element)	Yes; all architectures being considered should address all top-level requirements.
· · · · · · · · · · · · · · · · · · ·	artifacts (e.g., viewpoints)	Not generally; the process should be the same regardless of architecture.
Artifacts expected	artifacts (e.d. Viewpoints) needed	Not generally; the process should be the same regardless of architecture.

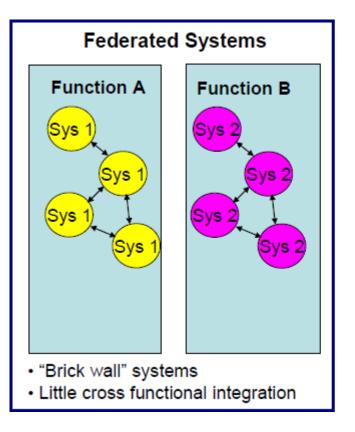
*Carson & Kohl, "New Opportunities for Architecture Measurement", Proceedings of INCOSE 2013 Copyright © 2014 Boeing, All rights reserved.


Quality Measures* Which measures can differentiate architectures?

The Boeing Company

Proposed Measures	Definition/Description	Architecture Discriminator?
Degree of requirements satisfaction	Count of number of requirements satisfied, normalized by the number of requirements	Yes. All architectures being considered should satisfy all top-level requirements.
Degree of Suitability	User/program-defined multivariate function of weighted suitability attributes (more on next slide)	Yes. Key discriminator when all solutions are compliant with requirements.
Degree of consistency of representation		Not generally. The process should be the same regardless of architecture.
Degree of standards compliance	Measures of adherence to external standards(data content and format), by artifact vs. time	Not generally. The process should be the same regardless of architecture.

Quality of Solution – Suitability


The Boeing Company

If the *only* way to meet *threshold performance* is less modularity, then the better architecture is less modular (more integrated).

Federated (modular) vs. Integrated Architectures

The Boeing Company

- Architecture is a choice that depends on selection criteria
- Modularity simplifies integration
- More "cross-functional integration" requires better program integration

Example: Performance and Modularity

The Boeing Company

Performance (weight = 75%)

- 550 nm range (threshold)
- 600 nm (objective)
- Modularity (weight = 25%)
 - Federated is preferred (1.0) vs. fully Integrated (0.0)

Suitability =	$\sum W$	$ V_i $ –	$-T_i$
Sunability –	$\sum_{i} \mathbf{v} \mathbf{v}_{i}$	$ O_i $ -	$-T_i$

Criterion	Value: A	W(V-T)/(O-T): A	Value: B	W(V-T)/(O-T): B
Performance	550 nm	$0.75^{*}0.0 = 0$	600 nm	$0.75^{*}1.0 = 0.75$
Modularity	Federated	0.25*1.0 = 0.25	Integrated	0.25 * 0.0 = 0.0
Suitability		0.25		0.75

Alternative B is preferred because (in this case) "Performance above threshold" is more valuable than "Modularity".

If weights are exchanged, Alternate A is preferred: "modularity" is more important than "range".

Which is more complex?

"Transaction types or messages, frequency/element"

The Boeing Company

Functional complexity Physical complexity Configuration Configuration Ethernet Data Bus Item #1 Item #2 Message Message Source Destination Number Name 001 Signal 1 1 2 002 Signal 2 2 1 003 Signal 3 2 1 004 Signal 4 2 1 005 Signal 5 1 2

1 signal/wire; 1000 wires

1 wire pair; 1000 signals

Complexity Comparison

Notional information

The Boeing Company

Measure ↓	Discrete Wires	Databus
Count of logical and physical interfaces/ element	1000	1 (twisted, shielded pair)
Transaction types or messages, frequency/ element	1	1000
Total Complexity (Σ)	1001	1001
Role affected	Physical / wire designer; Flight (payload/range)	Software engineer / bus message designer / integrator
Weight (22 AWG)	3 lbs/ft	0.015 lbs/ft
Reliability (failure rate)	$\sum \lambda$ (all wires)	λ (data bus)
Failure effects	Isolated and more predictable	Harder to predict & isolate; common mode failure effects
Life-cycle management	More difficult physical repair (e.g., aging wiring) or additions	More integration and regression testing for any changes (technology insertion or upgrade)

Complexity depends on your role

When is one architecture better than another?

The Boeing Company

An architecture is better when

- It meets all requirements (and another may not), and
- It satisfies architecture selection criteria better than another, and
- It has lower life-cycle costs (may be part of Suitability)
 - -Lower non-recurring costs (development, technology upgrades, DMS)
 - -Lower recurring costs (production, maintenance, spares)
- The only absolutes are the requirements
- Architecture evaluation/selection is another system tradeoff study that should be conducted during concept development and Analysis of Alternatives