

# WirginiaTech

#### Designing Resiliency into Critical Infrastructure Systems

#### NDIA Systems Engineering Conference Springfield, VA 28-30 October 2014

Dr. Warren K. Vaneman

Department of Systems Engineering Naval Postgraduate School Monterey, CA wvaneman@nps.edu Dr. Kostas Triantis Grado Department of Industrial and Systems Engineering Virginia Polytechnic Institute and State University Falls Church, VA triantis@vt.edu

## **Problem Statement**

- As today's critical infrastructure systems become more complex and interconnected, the probability of widespread and prolonged service disruptions increase.
- One has to look no further than the devastation that Super Storm Sandy caused to many New Jersey seaside municipalities, or envision the loss of communication capabilities due to a catastrophic event to our space-based or terrestrial infrastructure.





## **Critical Infrastructure Systems**

The U.S. PATRIOT Act (P.L. 107-56, Sec. 1016(e)) defined critical infrastructure as:

" systems and assets, whether physical or virtual, so vital to the United States that incapacity or destruction of such systems and assets would have a debilitating impact on security, national economic security, national public health or safety, or any combination of those matters."



### Example of Critical Infrastructure Systems







#### **Critical Civil Infrastructures**

- Highly decentralized and dynamic with interlocking parts.
- Permanent and durable, usually dependent on other infrastructures (interdependencies).
- Disruption of electrical power impacts water, government services, finance, and emergency services.

#### **Space-based Infrastructures**

- Centralized and static with strong interlocking parts.
- Permanent but fragile in a contested environment, but critical to other infrastructures (interdependencies).
- Disruption of service has widespread implications with impacts to communications or other spacebased services.

## Resiliency

Resiliency is the ability to adapt to changing conditions (natural or man-made) through planning on how to absorb (withstand) and rapidly recover from adverse events and disruptions.

#### **Definition Fundamentals:**

- Adapt to restructure before, during, or after an encounter with an adverse condition or threat.
- **Plan** to architect and engineer the system or SoS, in advance, to absorb or rapidly recover from an encounter with adverse events or disruptions.
- **Absorb** to retain full or partial functionality during an encounter with adverse conditions or disruptions.
- **Rapidly Recovery** to restore the system or SoS to full or partial functionality following an encounter with an adverse condition or threat that caused a degradation.

## **Resilient Architectures**

An architecture is resilient if it can provide the necessary operational functions, with a higher probability of success and shorter periods of reduced capabilities during and after an adverse condition or disruption through avoidance, robustness, recovery, and reconstitution.

#### **Key Elements:**

- Avoidance proactive or reactive measures taken to reduce the likelihood or impact of adverse conditions or threats.
- **Robustness** design feature to resist functional degradation and enhance survivability.
- **Recovery** actions and design features that restore a a lost capability to meet a specific mission set (perhaps the most critical mission set),
- **Reconstitution** -actions and design features a measure of how much the total capability can be replaced, and the time it takes to achieve it.

### **Attributes of a Resilient Architecture**

| Avoidance                               | Robustness               | Recovery                        | Reconstitution      |
|-----------------------------------------|--------------------------|---------------------------------|---------------------|
| Operational<br>Flexibility              | Physical<br>Redundancy   | Reduce<br>Complexity            | Repairability       |
| Policy and<br>Procedures<br>Flexibility | Functional<br>Redundancy | Repairability                   | Replacement         |
| Loose coupling                          | Distributed              | Reorganization of system or SoS | Logistical solvency |
| Extendibility                           | Reduce<br>Complexity     |                                 |                     |
|                                         | Disaggregation           |                                 |                     |
|                                         | Diversified              |                                 |                     |

Resilient Architectures exhibit one or more of these architectural attributes.

## Key Issues to be Addressed by a Resilient Architecture

- The architecture's resiliency attributes will determine how quickly, and completely, a system will recover from a disturbance.
- Key Questions:
  - Can the system withstand a disturbance with no loss of critical functions?
  - Can a disruption be isolated to prevent it from cascading to other interconnected systems?
  - Can the duration and magnitude of the disturbance be minimized?
- Recovery can be described with archetype of resilient behavior.







### Archetype of Resilient Behavior Generic Behavior



#### **Recovery & Reconstitution After a Disturbance**

## Archetype of Resilient Behavior Artificial Plateau



Artificial Plateau - System does not recover to original performance level.

### Archetype of Resilient Behavior Partial Absorbtion





Time (t)

#### Normal Recovery after a Partially Absorbed Disturbance

### Archetype of Resilient Behavior Gradual Degradation



#### Gradual degradation of capability, followed by recovery.

### Archetype of Resilient Behavior Accelerated Recovery



#### **How is Accelerated Recovery Achieved?**

## **Causal Relationships** in Resiliency

Architectural attributes early in the life-cycle can ease the recovery later in the life-cycle.



## **Research Overview**





- Define, model, and investigate the attributes of resilient architectures
- Determine which architectural attributes are most important for a given system
- Determine the architectural drivers, and establish measurable goals during recovery periods
- Explore how causal relationships of architectural attributes can enhance the system throughout the resiliency life-cycle

## Questions



# WirginiaTech

