

Technical Architecture for Arctic Security

2014 NDIA Systems Engineering Conference

30 October 2014

Tom McDermott

Director, Technology Policy Initiatives tom.mcdermott@gtri.gatech.edu

Tommer Ender, PhD

Chief, Sys. Tech & Analysis Division tommer.ender@gtri.gatech.edu

Andrew Register, PhD

Chief Scientist, Electronic Systems Laboratory andy.register@gtri.gatech.edu

Evolving Arctic Security Situation

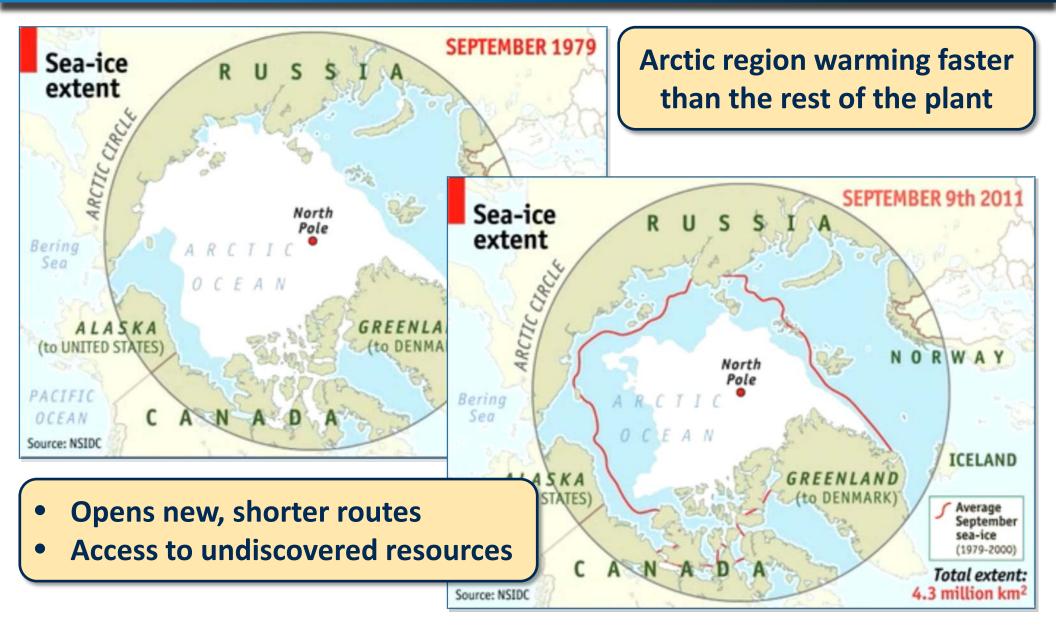
Georgia Research Tech Institute

Today: Emergent Situation

Existing international collaborations Insufficient navigation aids Limited communications Lack of basic infrastructure

Near term: Increased Traffic

Communication capacity Environmental impact Search & rescue authority/operations



Far term: Uncertainty

Permanent exploitation assets Disputes over natural resources Increased international cooperation

Retreat of Summer Arctic Ice: 1979-2011

Georgia Research Tech Institute

http://www.economist.com/blogs/dailychart/2011/09/melting-arctic-sea-ice-and-shipping-routes

Creating a logical long-term investment strategy for US agencies and industry

Georgia | Research Tech | Institute

NATIONAL STRATEGY FOR THE ARCTIC REGION

"Foster partnerships with the State of Alaska, Arctic states, other international partners, and the private sector to more efficiently develop, resource, and manage capabilities, where appropriate and feasible, to better advance our strategic priorities in this austere fiscal environment ."

MAY 2013

- Evolve Arctic Infrastructure and Strategic Capabilities – We will carefully tailor this regional infrastructure, as well as our response capacity, to the evolving human and commercial activity in the Arctic region.
- Enhance Arctic Domain Awareness —endeavor to appropriately enhance sea, air, and space capabilities as Arctic conditions change, and to promote maritime-related information sharing with international, public, and private sector partners...

Hoover Institute Arctic Security Working Group

Georgia | Research Tech | Institute

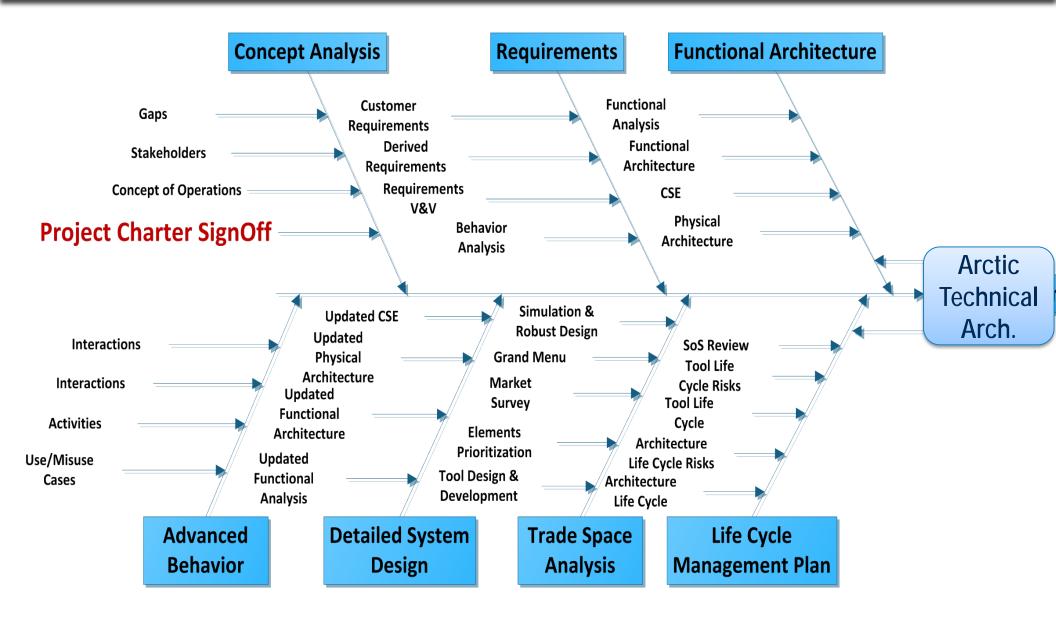
Arctic Security Initiative meeting

Monday, August 19, 2013

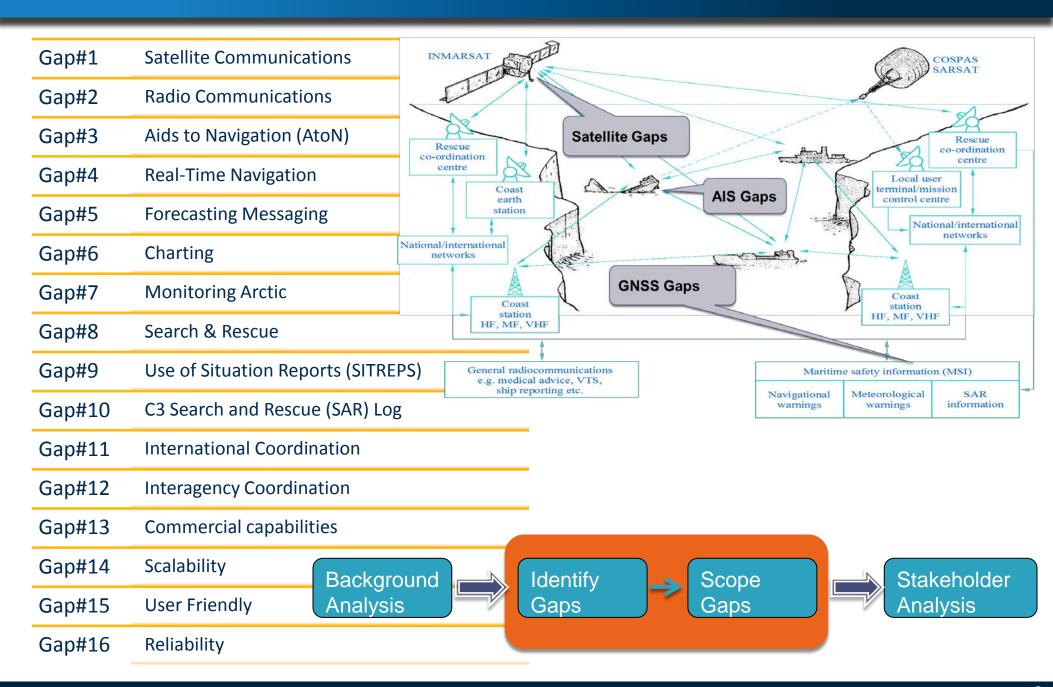
On August 15, the Arctic Security Initiative convened a Technology Working Group of policy and technical experts to discuss the continuing challenges of operating in the Arctic, one of a series focused on how best to help policy makers understand both the importance and the challenges of the US Arctic region. Today's discussions focused on navigation, communications, and response systems, all important aspects of Arctic operations but currently not as functional as they need to be. The group also discussed the application of new communication, navigation, and unmanned systems technology in a complex and changing Arctic environment, with the intention of creating concise policy recommendations that can be implemented in the High North to support US interests.

Image credit: Janet Chang

The changing global climate and the diminishing Arctic ice cap have made the Arctic more accessible now and in the foreseeable future.


When combined with economic and political developments, the changing Arctic is the most significant physical global event since the end of the last Ice Age. An unresolved strategic territory, the increased activity suggests that the region could become the subject of intensive negotiations and possible friction and confrontation relating to resources, ocean access, and sovereignty. In light of those changes and challenges, the Hoover Institution Arctic Security Initiative has been put in place to address the strategic and security implications of increased activity and to identify opportunities for shaping a safe, secure, and prosperous Arctic. (http://www.hoover.org/research-teams/arctic-security-working-group)

- Complex architecture / problem space
- Evolutionary development, much uncertainty
- Many stakeholders, regional/commercial/military
- Multi-national agreements and cooperation
- System of system with many performance gaps
- Balance of priorities
- Need for technology roadmapping and investment strategy
- Lack of tradespace insight for policy making


SE Process

Gap Analysis

Satellite Gaps in the Arctic

				Sub-Polar (70 N -	
	System	Characteristics	Polar (>80)	80 N)	Other (< 70 N)
		Cafaty related			
		Safety related		Ok, but unsuitable	Ok, but unsuitable
restrial				for digital	for digital
	HF, MF	communications	communications	communications	communications
					VHF is OK close to
le l					the coast, GSM/3G
	VHF, digital	Line-of-sight, voice	No base stations,	Few base stations,	limited coastal
	VHF, GSM, 3G	and low data rate	Ok ship-to-ship	OK ship-to-ship	coverage
		Medium capacity,		Potential problems	
		low to medium		with quality and	OK (Except in
	GEO satellites	latency	Not available	availability	special areas)
e	LEO satellites,	Currently max 128			
H	Iridium Open	-	Potential problems	Potential problems	Ok, except for areas
ate	Port	variable latency	with quality	with quality	around equator
S.		,	with quality		
		Properties			
	comparable to GEO. Expected to provide good coverage Currently the Polar and Sub-Polar areas. Sp				
			-Polar areas. Spare c	apacity can be used	
	HEO satellitesunavailablein other sea areas. Not yet			ea areas. Not yet im	plemented

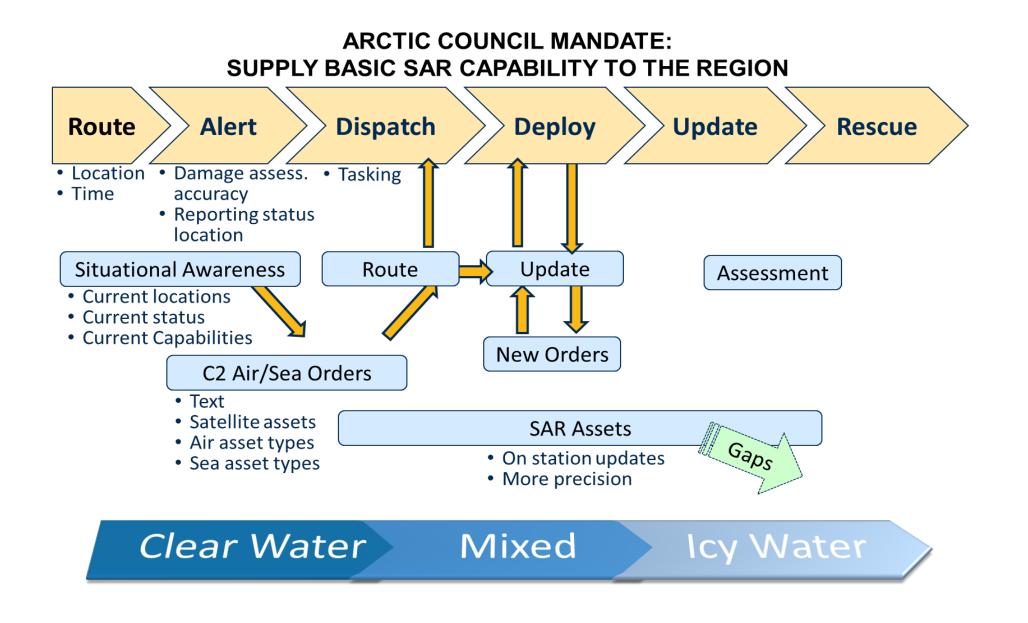
Stakeholders

Stakeholder	Interests		
Senior Arctic Official	Arctic Council senior member, chairs the council during host		
	country term		
U.S. Coast Guard (USCG)	Primary agency responsible for law enforcement and		
	incident response in the region		
Department of Defense	DoD agencies provide support to the Arctic through their		
	normal missions and capabilities, which support the Arctic		
	Theater although sometimes are limited by the environment.		
U.S. Navy	Executive agency for Maritime Domain Awareness, provides		
	global support as required		
U.S. Air Force	Enhanced Polar Satellite communications, provides global		
	support as required		
U.S. Army, U.S. Marine Corps	Provides global support as required		
National Oceanic & Atmospheric	Science, services, and stewardship, including		
Administration (NOAA)	information and products		
Dept. of the Interior, Bureau of Ocean Energy	Mineral Management Services		
Management			
The Arctic Council	International governance, agreements, and priorities		
Indigenous populations	Approval over changes to the infrastructure		
Commercial marine traffic	Shipping, recreation, fishing, etc.		
Commercial Oil & Gas, Mineral Industries	Development		
Non-government Organizations	Stewardship and oversight of the region		
Private Salvage /Search & Rescue industry	Commercial response services		

Near Term Vignettes

- Stranded ships
 - Tourist Cruise
 - Oil/mineral
 - Exploration team
 - Fishing
 - Disruption of indigenous folkways
- Ecological disasters
 - Oil Spill

Common thread: all result due to dynamic "landscape" as ice melts



Georgia Research Tech Institute

- Primary: Search and Rescue (SAR)
 - Governed by IMO International Aeronautical and Maritime Search and Rescue (IAMSAR) guidelines, MSC.1/Circ.1367, 24 May 2010
- Primary: Maritime Domain Awareness (MDA)
 - Governed by US DoD Directive 2005.02E, August 27, 2008
- Primary: Maritime Transportation
- Supporting: Law Enforcement & Coastal Security
- Supporting: Marine Environmental Protection Supporting: Oceanographic Research
- Supporting: Environmental Forecasting (NOAA)

Arctic SAR Functional Architecture

Factors that Drive SAR Mission Requirements (lessons learned)

Reporting

• Unreliable vessel reports and tracking lead to false searches

Event location

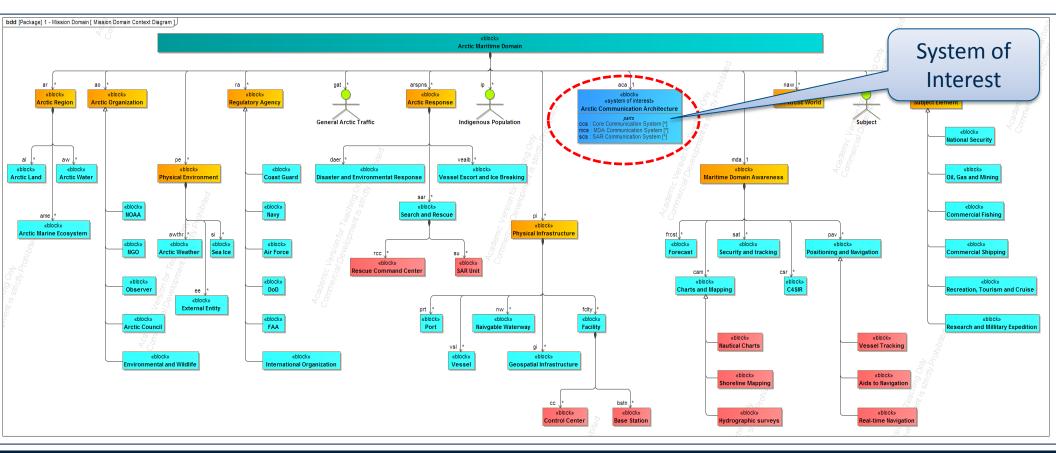
- Weather
- Distance to responding ships
- Distance to responding aircraft
- Accurate coordination and reporting of search areas

Communication

- Ship positioning/occlusion
- Bandwidth/channels for data, particularly internet data
- Effective C2 capability (operational picture)

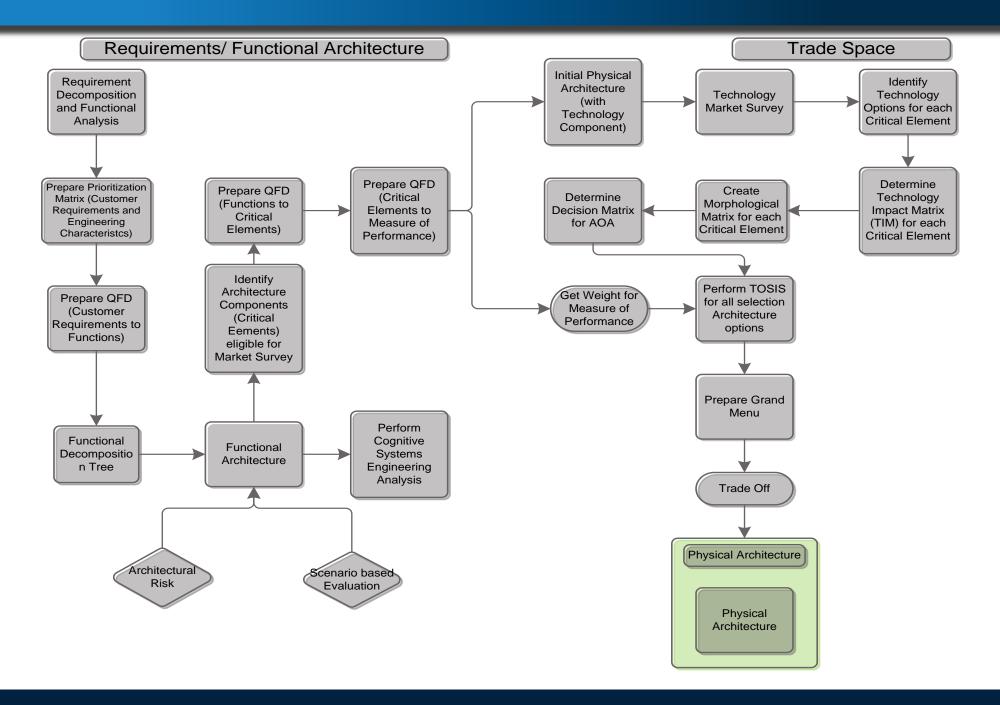
Navigation

- Routing through or around ice
- Real time updates


General

- Technology standardization and interoperability
- Language and country unique operations

SySML Model for Arctic Communications



- Arctic Communication gaps form SoS capstone opportunity for Masters students
- Completed gap/capabilities analysis, SySML model, Tradespace analysis tool, initial simulation

Trade Space Analysis for Arctic Communications

Georgia Research Tech Institute

- Evolving problem
- International stakeholders expecting US leadership
- Unique technical environment
- Limited budgets, higher priorities
- Lack of insight for policy-making
- Solid understanding of current/future technical architecture promotes:
 - Investment planning/technology roadmaps
 - Tradespace analysis
 - Multi-stakeholder decision making
 - Balance of support based on evolving needs

Technical Architecture for Arctic Security

2014 NDIA Systems Engineering Conference

30 October 2014

Tom McDermott

Director, Technology Policy Initiatives, Georgia Tech Research Institute Atlanta, GA 30332 tom.mcdermott@gtri.gatech.edu 404-407-8240