Noise Control The Role Of Noise Control in Systems Engineering

Kurt Yankaskas kurt.d.yankaskas@navy.mil 703-696-6999

Disclosures

- There are no conflicts of interest or financial interests to report.
- The views expressed herein are my own and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the U.S. Government.

Topics

- Operational Noise
- Hearing Protection
- Noise Propagation/modeling
- Noise Control Techniques

Hazardous levels of noise: Afloat and Ashore

Ships are loud places to work!

How well do you have to hear to do your job?

Noise-Induced Hearing Loss

Hazardous Noise Exposures Impact

VA Disabilities

PERCENT OF ALL DISABILITIES FY2012

Tinnitus

- Limitation of flexion, knee
- Lumbosacral or cervical strain
- Limitation of motion of the ankle
- Migraine
- All others

- Hearing Loss
- Post Traumatic Stress Disorder
- Scars, general
- Degenerative arthritis of the spine
- Residuals of foot injury

USMC Hearing Aids Dispensed

Hearing Protection Effectiveness

Ref: E. Berger, SAFE 02

Hearing Protection - Acoustic Performance

Ear Plug Performance

Match PPE to Noise Exposure

Advanced Hearing Protection for LCS 1

High Performance Plugs Standard Speaker/Mic	 Description of Need Required double hearing protection have deficiencies for Navy applications in high noise environments, including engine rooms and flight decks resulting in noise induced hearing loss. Operational Scenarios frequently require communication in high noise environments which compromise speech intelligibility and mission effectiveness. Uniform compatible pouch improves accessibility.
<u>Solution</u> Developed prototype solutions, using Air Force developed custom molded earplugs and commercial state of the art hearing protection. New processes for custom molded earplug deployment are being developed through a Lean Six Sigma Project and will be implemented throughout Navy platforms. LCS 1 (NAVSEA) and CVN 69 (NAVAIR) are the initial deployments.	 Benefits Deployment of custom molded earplugs will result in : Sailor Buy-in More Effective Hearing protection Lower Noise induced hearing loss/tinnitus Reduced communication errors Situational Awareness Tactical Effectiveness

molded earplugs (SBIR project)

Auditory Profiles

Auditory Warfighter Performance

In	

Identification, Gunshot (Larger percents are better.)

Hearing Condition

Effects of Augmented Hearing Protection/ Enhancement Devices (HPEDs) on Auditory Detection and Identification

Ref: J, Clasing, Virginia Tech

	Good Hearing	Poor Hearing
Time to Identify Target	40 sec	90 sec
Incorrect Command Heard by Gunner	1%	37%
Correct Target Identification	98%	68%
Enemy Targets Killed	94%	41%
Wrong Target Shot	0%	8%
Tank Crew Killed by Enemy	7%	28%

Ref: <u>Tank Gunner Performance and Hearing Impairment</u> (Garinther & Peters, Army RD&A Bulletin 1990, Jan-Feb 1-5)

Hazardous Noise Control

Noise Level

Noise-Induced Hearing Loss Portfolio

Systems Approach for an Integrated 6.1 / 6.2 / 6.3 Program

Technology Development

Integrated Ship Specification: T-AGOS 23

Yankaskas

Acoustic Modelling

- Acoustic modeling tool Designer NOISE[™]
 - Continued to add features/technology
 - Redesigned GUI
 - Additional source elements
 - HVAC module updates
 - Updated treatment algorithms
 - Validated on CVN and LHD
 - Better understanding of F18 and JSF source levels
 - Better understanding Airborne and structureborne transmission paths
- Novel treatments for noise control
 - Validated effectiveness of spray-on treatment on CVN
 - Identified replacement treatment for CVN island acoustic shielding
- Noise control methodologies
 - Applied to marine vehicle
 - Reclamation powerplants

HVAC - Construction

HVAC – High Velocity

Acoustic Insulation Compromised by a Larger Fan

GT EXHAUST

PROBLEM
 Recirculation evident
 Solution
 Smooth flow

Flow Control

GT Intake and Exhaust

- Problem:
 - Inefficient design with much turbulent flow

- Solution
 - Use CFD to design smooth flow

LCS 1 Noise Overages

Location Risk: Airborne Noise Levels

Acoustic Holography

Thermal Advantages of the TEMP-COAT System

Un-coated section of the steam catapult trough

- Temperature of steel plate is 109°F
- Thermal Transfer entering ship envelope can escape into interior of vessel at damages area of lagging
- Allows potential for condensation to develop
- Personnel discomfort due to high heat buildup in rooms in which catapult passes

Coated section of the steam catapult trough

- Temperature of steel plate is 82.2°F
- Adheres directly to substrate blocking thermal transfer from entering the ship envelope
- Allows the ability to significantly curb or stop condensation aiding the fight against Corrosion Under Insulation
- Reduces temperatures in spaces

Condensation Mitigation

Shipboard Noise Control

Sources of Noise are well known ! The usual acoustic culprits:

Hazardous Noise Control

Time

Noise Level

Engagement Required

- Advocacy for noise control
- Noise Control is Systems Engineering
 - Requires less acoustic treatment (i.e. weight)
 - Less maintenance (DD 963)
 - Fuel savings
 - Readily accomplished in design
- Vigilance on instruction revisions
- Hearing preservation vice hearing conservation

