

Robert E. Smith, CSP, Booz Allen Hamilton

NDIA Systems Engineering Conference
Springfield, VA

October 30, 2014

16987
Software Safety Analysis – A New
Requirement?

Agenda

Purpose
Why is Software Safety Analysis Important?
Software Safety Assessment Standards and Policy
Key Definitions
DoDI 5000.02 Documentation Requirement – Scenarios
General Software Safety Steps
Software Safety Analysis and Verification Process
Conclusion

1

Purpose

Describe why software safety analysis is important

Identify DoDI 5000.02 requirements for documentation of the analysis
process used and the results

Describe two scenarios where a software safety analysis is required
– Programs where there is a hardware and software component

– Programs where there is only a software component

Describe the basic structure of the software safety analysis process and the
MIL-STD-882E specified Level of Rigor (LOR) tasks

2

Why is Software Safety Analysis Important?

Software can cause, influence, contribute to, or mitigate hazards that may
lead to mishaps

The system safety and software system safety analysis processes identify
and mitigate the software contributors to hazards and mishaps
– Successful execution of pre-defined LOR tasks increases the confidence that the software

will perform as specified to software performance requirements, while reducing the number
of contributors to hazards that may exist in the system

– Both processes are essential in reducing the likelihood of software initiating a propagation
pathway to a hazardous condition or mishap

3

Software Safety Assessment Standards and Policy
The need and requirement for the software safety assessment is not new -- it has been

included in government and industry safety and software safety standards, but the requirement
has become more explicit over time

– MIL-STD-882B, System Safety Program Requirements, MAR 1984; MIL-STD-882C, System
Safety Program Requirements, JAN 1993; and MIL-STD-882E, Standard Practice for
System Safety, APR 2012: Para 4.4 Software contribution to system risk

– DoDI 5000.02 since 2001; Interim Release NOV 2013, Enclosure (3), Systems Engineering:

– Para 11, Software. “The SEP should address the following: software unique risks;
inclusion of software in technical reviews; identification, tracking, and reporting of metrics
for software technical performance, process, progress, and quality; software safety and
security considerations; and software development resources.”

– Para 16, ESOH. “The Program Manager will use the methodology in MIL-STD-882E,
‘DoD Standard Practice for System Safety.’”

– DoD Joint Software Systems Safety Engineering Handbook (JSSSEH) Version 1.0, AUG
2010

– Allied Ordnance Publication (AOP)-52 (EDITION 1) – Guidance On Software Safety Design
and Assessment of Munitions-Related Computing Systems, DEC 2008

– NASA-STD 8719.13 Software Safety Standard, MAY 2013
4

Key Definitions

Safety Significant
– A term applied to a condition, event, operation, process, or item that is identified as either

safety critical or safety related

Safety Critical
– A term applied to a condition, event, operation, process, or item whose mishap severity

consequence is either Catastrophic or Critical (e.g., safety-critical function, safety-critical
path, and safety-critical component)

Safety Related
– A term applied to a condition, event, operation, process, or item whose mishap severity

consequence is either Marginal or Negligible

5

DoDI 5000.02 Documentation Requirement –
Scenario One

1. The Program has responsibility for development, integration or upgrade
for hardware controlled by software (e.g., the aircraft that relies upon an
operational flight program)

– The system safety and software system safety analysis processes identify and
mitigate the software contributors to system hazards and mishaps

– Document the planning for software safety analysis, as part of overall
Environment, Safety, and Occupational Health (ESOH) planning, in the Systems
Engineering Plan (SEP)

– Document the software safety analysis and risk assessment results in the
Programmatic Environment, Safety, and Occupational Health Evaluation (PESHE)

6

DoDI 5000.02 Documentation Requirement –
Scenario Two

2. The Program has responsibility for development of the software package
only and has no responsibility for how the software will be applied (e.g., a
software program that allows the collection and distribution of medical
information, personnel information (including personally identifiable
information))

– In this case, the software safety analysis has to take into account how the
software package will be used in order to determine if software could contribute to
the risk of a mishap occurring

– Document the planning for software system safety analyses in the SEP

– If the software package can contribute to mishap risk, the analyses follow the
same process as Scenario One - Document the software safety analysis and risk
assessment results in the PESHE

– If the software cannot contribute to the risk of a mishap occurring, document the
rationale for this determination as the results of the software safety analysis in the
PESHE (for the software package program)

7

General Software Safety Steps*

Step 1 – Start with an identified hazard and system risk assessment

Step 2 – Perform Software analysis to determine degree of software control
for the identified hazard (Software Control Category (SCC))

Step 3 – Using the SCC and the severity category for the identified system
hazard, determine Software Criticality Index (SwCI) and Level of Rigor
(LOR) required to evaluate impact of software on the system risk

Step 4 – Review LOR tasks execution
– Step 4a - If LOR tasks not completed, assign risk level to hazard based on MIL-STD-882E,

Table VI

– Step 4b – If LOR tasks are completed successfully, use results to reassess system risk of
identified hazard

8

* These are the general software safety steps assuming Scenario One has been determined.

If Scenario Two has been determined, document the rationale for this determination as the
results of the software safety analysis in the PESHE (for the software package program)

Step 2 - Software Control Categories (SCC)

Same definitions as used in the JSSSEH
TABLE IV. SOFTWARE CONTROL CATEGORIES

Level Name Description

1 Autonomous
(AT)

• Software functionality that exercises autonomous control authority over potentially safety-significant
hardware systems, subsystems, or components without the possibility of predetermined safe detection
and intervention by a control entity to preclude the occurrence of a mishap or hazard.
(This definition includes complex system/software functionality with multiple subsystems, interacting
parallel processors, multiple interfaces, and safety-critical functions that are time critical.)

2 Semi-
Autonomous (SAT)

• Software functionality that exercises control authority over potentially safety-significant hardware
systems, subsystems, or components, allowing time for predetermined safe detection and intervention
by independent safety mechanisms to mitigate or control the mishap or hazard.
(This definition includes the control of moderately complex system/software functionality, no parallel
processing, or few interfaces, but other safety systems/mechanisms can partially mitigate. System
and software fault detection and annunciation notifies the control entity of the need for required safety
actions.)

• Software item that displays safety-significant information requiring immediate operator entity to execute
a predetermined action for mitigation or control over a mishap or hazard. Software exception, failure,
fault, or delay will allow, or fail to prevent, mishap occurrence.
(This definition assumes that the safety-critical display information may be time-critical, but the time
available does not exceed the time required for adequate control entity response and hazard control.)

9

Step 2 - SCC (cont)

Same definitions as used in the JSSSEH

3 Redundant
Fault Tolerant (RFT)

• Software functionality that issues commands over safety-significant hardware systems, subsystems, or
components requiring a control entity to complete the command function. The system detection and
functional reaction includes redundant, independent fault tolerant mechanisms for each defined hazardous
condition.
(This definition assumes that there is adequate fault detection, annunciation, tolerance, and system
recovery to prevent the hazard occurrence if software fails, malfunctions, or degrades. There are
redundant sources of safety-significant information, and mitigating functionality can respond within any
time-critical period.)

• Software that generates information of a safety-critical nature used to make critical decisions. The system
includes several redundant, independent fault tolerant mechanisms for each hazardous condition, detection
and display.

4 Influential • Software generates information of a safety-related nature used to make decisions by the operator, but does
not require operator action to avoid a mishap.

5
No Safety

Impact
(NSI)

• Software functionality that does not possess command or control authority over safety-significant hardware
systems, subsystems, or components and does not provide safety-significant information. Software does
not provide safety-significant or time sensitive data or information that requires control entity interaction.
Software does not transport or resolve communication of safety-significant or time sensitive data.

10

Step 3 - Software Safety Criticality Matrix (SSCM)

11

Step 4 - Relationship Between SwCI and Risk

Characterizes the System Safety responsibilities to the PM for software system safety.
Life-cycle independent 12

13 13 13 NSWCDD-PN-14-00295 is approved for Distribution Statement A:
Approved for Public Release; distribution is unlimited.

Software Safety Analysis and Verification Process

System Definition
and Software

Safety Planning

Software
Requirements

Hazard Analysis
(SwCI 1-3)

Software Design
Hazard Analysis

(SwCI 1-2)

Formal
Review

Start

Fleet Release

Top-Level Process

Regression
Testing

Defect
Resolution Sub-Process

Fleet Anomaly
Reporting

Software Criticality Matrix

Software
Architectural

Hazard Analysis
(SwCI 1-3)

Determine
Software

Criticality Index
(SwCI)

Code Level
Hazard

Analysis
(SwCI 1)

Software Testing and
Verification

(SwCI 1-4)

In-depth Safety - Specific
Testing

(SwCI 1-3)

Safety - Specific
Testing
(SwCI 4)

Operator
Documentation
Safety Review

13

Conclusion

MIL-STD-882E and DoDI 5000.02 make Software System Safety
Engineering and Analysis a clear requirement
– It is important that software be analyzed within the context of the system it functions in

– A successful software system safety engineering activity is based on a hazard analysis
process, a safety-significant software development process, and LOR tasks

– Emphasis is placed on the context of the “system” and how software contributes to or
mitigates failures and mishaps

– The software system safety effort should be performed in conjunction with the system
safety, software development, software test, configuration management, and Independent
Verification and Validation team(s)

DoDI 5000.02 identifies requirements for documentation of the
software safety analysis process used and their results

14

Questions?

Robert E. Smith, CSP
Booz Allen Hamilton

1550 Crystal Drive, Suite 1100
Arlington, VA 22202-4158

703-412-7661
smith_bob@bah.com

15

	Slide Number 1
	Agenda
	Purpose
	Why is Software Safety Analysis Important?
	Software Safety Assessment Standards and Policy
	Key Definitions
	DoDI 5000.02 Documentation Requirement –�Scenario One
	DoDI 5000.02 Documentation Requirement – Scenario Two
	General Software Safety Steps*
	Step 2 - Software Control Categories (SCC)
	Step 2 - SCC (cont)
	Step 3 - Software Safety Criticality Matrix (SSCM)
	Step 4 - Relationship Between SwCI and Risk
	Software Safety Analysis and Verification Process �
	Conclusion
	Slide Number 16

