

J A KUB J . MO SKAL , M I TCH M . KO KAR

PA UL R . WO RK , THOMAS E . WO OD

O C T O B E R 2 9 , 2 0 1 4

Tool Support for Tradespace
Exploration and Analysis

Background and Motivation

 SBIR Phase I: OSD12-ER2

 “MOCOP”: Functional Allocation Trades Between
HW and SW

 Project objectives:
 Develop a software tool for allocating system functions to

implementations of hardware or software. The tool shall
make comparative (qualitative and quantitative)
assessments between allocations of the same function to
hardware and software implementations.

2

Engineered Resilient Systems (ERS)

 OSD: a resilient system ”is trusted and effective
out of the box in a wide range of contexts, and
easily adapted to many others through
reconfiguration and replacement”
 Adaptable (and thus robust) designs (based on models)

 Faster, more efficient design iterations

 Decisions informed by mission needs

 More options considered deeply, broader trade space
analyses

 Interaction and iterative design in context among
collaborative groups

 Ability to simulate and experiment in synthetic operational
environments

3

Functional Allocation Use Cases

 Considered at the beginning of the project:
 Top-down

 Bottom-up

 Dynamic (reallocation)

 Predictions-based

 The reality:
 Models expressed in SysML

 No “library”

 Lack of formal semantics

 Clean slate design for complex systems rarely happens

 Composition of existing technology to meet the next generation
challenge – a historical problem at DoD

4

Real-World Challenges (1/2)

 SME-centric process
 SME’s knowledge is not formally captured
 Trade space is not fully explored
 Rigid process is desired

 Software reuse not always possible
 Old components might rely on OS that is no longer available

 Non-functional requirements do matter
 Example: foreign customers allowed less capable versions only

 Cost of requirements is not well established
 Requirements become very entangled
 Sometimes cost is not known until its built

5

Real-World Challenges (2/2)

 Appropriate model library is missing
 Not clear what each model should capture
 What would it take for HW component X do something else?

 The cost function varies

 Utility function changes from activity to activity
 Different sources of money

 Contracting arrangements must be considered
 Single giant model library unlikely
 Rather: allocation across multiple contractor-specific model libraries

 The impact of reallocation (“ripple effect”) must be quantified
 Scenario 1: New commercial component

 Can it improve cost, performance, or functionality of the existing system?
 Scenario 2: Change in the customer’s affordability of a system

 What requirements can we let go?

6

Primary Use Case considered in Phase I

 Dynamic reallocation of functionality
 Driven predominantly by cost reduction

 Use case: Ripple effect assessment
 Impact on functionality

 Impact on non-functional aspects:

 Engineering cost

 Resilience

 Performance

 Reliability

7

Considered change in the design

 OS-CFAR FPGA HW Unit
 Implements Constant False Alarm Rate

 Threshold:

 Low  detects more targets, but more
clutter

 High  detects less clutter, but fewer
targets

 Two designs:
 Old: FPGA inside the console

 (radar processor)

 Considered: FPGA in the pedestal

8

Ripple Effect

 Multiple consoles can use output of a single sensor (pedestal &
antenna)

 FPGA is an expensive piece of HW, there is opportunity to reduce
cost

 Comparison:

9

CHALLENGE:

1. Formally represent allocations and assess the impact on different
metrics.

2. Provide means to viewing the tradespace.

SysML Requirements and Allocations

 The problem is to allocate requirements to components (HW
or SW)

 Requirements are kept in SysML Requirements Diagrams
 Functional requirements must be realized
 Non-functional are represented by objective functions or constraints

 Objective functions use arguments (parameters) captured in
SysML Parametric Diagrams

 Constraints expressed with equations

 Allocations defined using meta-associations
 <<allocate>>
 <<allocatedFrom>>

 All necessary input can be collected from existing SysML
model

10

SSR Reallocation Scenario in SysML

OLD NEW

11

Representation Language Stack

The “Layer Cake” (Tim Berners-Lee)

 Knowledge representation
 Web Ontology Language, OWL

(2004) and OWL 2 (2009) –
widely adopted in the Semantic
Web community

 Semantics based on Description
Logics (DL)

 Decidable fragment of First-
Order predicate Logic (FOL)

 Query Language
 SPARQL

 Rule Language
 Rule Interchange Format

12

MOCOP Upper-level ontology

13

 Based on DOLCE
 Object (endurant)

 Wholly represented at any given
snapshot of time

 Here: systems, configuration
items, components, units

 Process (perdurant)

 Can be represented only
partially at any snapshot of time

 Here: capabilities, functionality,
requirements

Old and New Design in OWL

14

Assessment of the Ripple Effect – Functionality

 System functionality measured in terms of
requirements it meets
 Hard requirements – must be met, otherwise the

allocation is invalid

 E.g. radar system must have an antenna

 Soft requirements – might be let go of, depending on the
objectives, e.g. cost reduction

 E.g. radar system must have two operator consoles

 There are no “user features”
 The system must meet all requirements, at minimum cost

15

CFAR Soft Requirement

16

 Intent:
 The system shall allow for independent threshold selection for

each operator console connected to the same radar sensor.

 Encoded as OWL Restriction class:
 SSRSoftRequirement1 ⇔

 SurfaceSearchRadar and hasConfigurationItem some
 (RadarProcessor and hasCapability some
Thresholding)

 Allocation meets the requirement if it is inferred as
its instance:
 SSR1-1 rdf:type SSRSoftRequirement1

Functionality Assessment Rules

17

 Identify invalid systems
 System that does not meet all of the hard requirements

 Identify hard requirements met
 Systems that are instances of mocop:HardRequirement

 Identify soft requirements met
 Systems that are instances of mocop:SoftRequirement

 Establish requirements coverage for each system
 Compare requirements met vs. all requirements

 All rules and procedural attachments are generic
 SSR-specific concepts are not included

Assessment of the Ripple Effect - Cost
 Cost is not a single dimension:

 Cost of production
 Material cost
 Sales price (third-party)
 Operating cost
 Maintenance cost
 Sustainment cost

 One type of cost considered in Phase I

 Measured in US dollars

 Depth-first search of the decomposition

tree
 Include cost of integration (middleware,

enclosure)

 OWL not suitable for this task

 Rules are needed to “walk” the tree

 Procedural attachments to do algebraic
operations

18

Cost Assessment Rules

 Identify part-whole relationships:
 System (1–*) ConfigurationItem

 ConfigurationItem (1–*) Component

 Component (1–*) Unit

 Identify the cost of each system part

 Sum the cost of system parts
 For each system in the knowledgebase

 All rules and procedural attachments are generic
 SSR-specific concepts are not included

19

MOCOP Prototype Architecture

20

 GUI
 Designer interacts directly with well-

known software:
 IBM Rational, Rhapsody

 MOCOP:
 Implemented as an Eclipse plugin

 Solver
 Implements optimization algorithm

 Inference Engine
 Matching
 Decomposition
 Ripple Effect assessment

 Ontologies & Policies

 Formally represented library of models
and functions

Implementation Details

21

 Inference engine: BaseVISor
 OWL 2 RL
 Custom semantic rules
 Procedural attachments
 Embeddable, JVM environment

 Ontologies developed using Protégé

 MOCOP ontology
 SSR ontology extends MOCOP, domain-specific

 Rules expressed in BVR
 In the future, they could be expressed in RIF/SBVR

 Controller written in Java

 Ripple effect is assessed and saved as an Excel spreadsheet

ConOps (1/2)
Building model library stage

22

1. System engineer responsible for a specific system
element (unit, component, etc.) uploads relevant
SysML diagrams

2. The MOCOP plugin converts the diagrams into OWL
representation, displays a GUI with prepopulated
values from the diagrams

3. System engineer provides additional input that was not
possible to capture in the SysML diagrams

4. The MOCOP plugin stores the values entered in the
GUI as OWL

Designer is not aware that OWL-based technology is used

ConOps (2/2)
Design stage

23

1. Designer provides necessary input:
 Requirements for the system are specified using SysML Requirements

Diagram
 Objective functions and constraints are captured in SysML Parametric

Diagrams

1. The MOCOP plugin displays the trade space

 Each point is associated with a specific solution
 Each solution represented in SysML diagrams: block, parametric,

allocation, etc.

1. Designer might reject some solutions or change constraints

and rerun the trade space analysis

2. The iterative process continues until the designer finds the
best solution

Designer is not aware that OWL-based technology is used

Meeting the ERS objectives

24

 Our approach supports ERS:
 Trade space analysis at early stage

 Discover unintuitive solutions

 Avoid integration problems

Thank you!

25

 Interested parties are welcome to contact
VIStology:

 Jakub Moskal: jmoskal@vistology.com

	Tool Support for Tradespace Exploration and Analysis
	Background and Motivation
	Engineered Resilient Systems (ERS)
	Functional Allocation Use Cases
	Real-World Challenges (1/2)
	Real-World Challenges (2/2)
	Primary Use Case considered in Phase I
	Considered change in the design
	Ripple Effect
	SysML Requirements and Allocations
	SSR Reallocation Scenario in SysML
	Representation Language Stack
	MOCOP Upper-level ontology
	Old and New Design in OWL
	Assessment of the Ripple Effect – Functionality
	CFAR Soft Requirement
	Functionality Assessment Rules
	Assessment of the Ripple Effect - Cost
	Cost Assessment Rules
	MOCOP Prototype Architecture
	Implementation Details
	ConOps (1/2)�Building model library stage
	ConOps (2/2)�Design stage
	Meeting the ERS objectives
	Thank you!

